Elektrikoff09.ru

Журнал "Электросети"
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проверка автоматических выключателей напряжением до 1000 В

Проверка автоматических выключателей напряжением до 1000 В

После выполнения замены или заново уложенной электропроводки требуется установка приборов учета потребления электроэнергии и всех необходимых приборов, обеспечивающих бесперебойное функционирование и безотказную работу всех видов подключаемого оборудования и электроприборов. Установленные защитные приборы следует испытать на корректность работы или, как говорят профессиональные электрики — прогрузить.

Читайте также статью ⇒ Автоматический инфракрасный выключатель.

Проверка характеристик автоматического выключателя

СИСТЕМЫ ДЛЯ ИСПЫТАНИЯ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

Мобильные системы серии УПА предназначены для проверки характеристик расцепления автоматических выключателей переменного тока с электромагнитными и тепловыми расцепителями.

Максимальный испытательный ток, который могут обеспечивать установки УПА, составляет:

  • УПА-1 — 1 кА
  • УПА-3 — 3 кА
  • УПА-6 — 6 кА
  • УПА-10 — 10 кА
  • УПА-16 — 16 кА
  • УПА-20 — 20 кА

устройство прогрузки актоматов УПА

  • Общее описание
  • Фото
  • Характеристики
  • Документация
  • FAQ

ПРОВЕРКА ВРЕМЯ-ТОКОВЫХ ХАРАКТЕРИСТИК

Системы УПА могут использоваться для проверки время-токовых характеристик автоматических выключателей (при использовании внешнего регулятора напряжения) согласно ГОСТ Р 50345-2010 (МЭК 60898-1:2019) или МЭК 60934:2019.

КОМПЛЕКСНАЯ ПРОВЕРКА АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

Системы УПА могут применяться для оперативной предварительной проверки работоспособности расцепителей, полноценного снятия время-токовых характеристик, а также проверки влияния однополюсной нагрузки на характеристику расцепления многополюсного автоматического выключателя.

ФИКСИРОВАННАЯ ДЛИТЕЛЬНОСТЬ ПРОПУСКАНИЯ ТОКА

Устройство для прогрузки автоматов УПА передняя панель

Системы УПА позволяют проводить испытания как в продолжительном цикле, так и с фиксированной длительностью пропускания тока. Быстрое отключение позволяет осуществлять кратковременную подачу испытательного тока до 50 мс.

Устройство для прогрузки автоматов УПА передняя панель

ВЫСОКОЭФФЕКТИВНЫЙ ИСТОЧНИК ТОКА

В качестве источника испытательного тока применяется легкий и компактный тороидальный трансформатор, обладающий высоким КПД.

Сила выходного тока регулируется количеством и витками гибких токопроводов, которые пропускаются через тороидальный трансформатор, формируя вторичную обмотку. Подобное решение позволяет получать широкий спектр значений выходного тока при использовании всего одного источника.

БЕЗОПАСНАЯ КОМПОНОВКА

Схема подключения устройства для прогрузки автоматов УПА-6, 10, 16, 20

Все системы УПА включают два основных модуля — блок управления и источник тока, укомплектованные необходимым набором соединительных кабелей.

Решение с выносным источником тока позволяет оператору находиться на безопасном расстоянии от силового трансформатора и испытуемого автоматического выключателя.

Схема подключения устройства для прогрузки автоматов УПА-6, 10, 16, 20

МОБИЛЬНОСТЬ

Все модули систем серии УПА индивидуально портативны, но в стандартной комплектации поставляются на тележке для удобства транспортировки.

Узкая колесная база тележки идеально подходит для доставки и развертывания системы в небольших распределительных комнатах.

УПА-1 / УПА-3

Пульт управления УПА-3

Тороидальный токовый трансформатор УПА-1 (УПА-3)

УПА-6 / УПА-10

Пульт управления УПА-10

Источник тока УПА-20

Пульт управления УПА-20

Регуляторы напряжения УПА

■ Продолжительный (до 7200 с)

■ Фиксированный (50 / 100 / 200 / 400 / 600 / 800 / 990 мс, 10 с) **

Читайте так же:
Оптоакустический выключатель оав схема

■ Защита от превышения допустимой силы тока

■ Защита от перегрева

* Указанные метрологические характеристики применимы к системным средствам индикации силы тока и времени только в режиме регулирования мощности внешним регулятором напряжения.

** По заявке пользователя имеется возможность заводского изменения предустановленных длительностей пропускания испытательного тока.

*** Если сила выходного тока превышает 1000 А, не рекомендуется задавать длительность его пропускания, равную или превышающую 10 с.

Обязательно ли использовать РНО с установками УПА?

Установки серии УПА предназначены для проверки работоспособности и время-токовых характеристик автоматических выключателей (АВ) с электромагнитными и тепловыми расцепителями. В ходе испытаний через АВ пропускается испытательный ток и регистрируются основные параметры расцепления: сила и длительность пропускания испытательного тока при срабатывании размыкателя, а также время, в течение которого выключатель выдержал заданную нагрузку без размыкания. Регулировка может производиться встроенным ТРТ или внешним РНО. Использование того или иного способа определяет форму сигнала выходного тока.

Использование встроенного тиристорного регулятора позволяет провести предварительную проверку работоспособности автоматического выключателя, при этом выходной ток имеет не синусоидальную, как в реальных условиях эксплуатации, а импульсную характеристику. Данный способ не дает возможности получить время-токовые значения.

Использование внешнего РНО обеспечивает получение синусоидального сигнала, что гарантирует высокую точность измерений. При этом фиксируется ампер-секундная характеристика испытуемого автоматического выключателя с регистрацией значений тока и времени срабатывания расцепителя.

Основы проверки автоматических выключателей постоянного тока

Базовым исследованием выступает прогрузка, которая происходит при помощи повышения силы тока до значения, при котором происходит срабатывание. Вначале устройство для проверки автоматических выключателей подключается к их соответствующим полюсам, что требует правильного подбора проводников – соответствующую таблицу вы можете найти в ПУЭ.

Испытание стойки с электрикой

Затем сила тока повышается до уровня, на 20-30% меньшего, чем установленный производителем для отключения. Срабатывания при этом не должно происходить, что заносится в протокол испытаний. В конце испытания автоматических выключателей резким скачком сила тока повышается до значения отсоединения – при этом отмечаются конкретные значения времени расцепления и электротехнических параметров.

Если оценивается электроснабжение склада, на котором происходит хранение горючих или взрывчатых материалов, стоит также оценивать и температурные параметры расцепления. Для этого устанавливаются сила тока и напряжение на 20-30% большие номинального, однако, не достигающие уровня отключения.

Происходит длительное испытание, которое призвано определить, при достижении какой температуры сработает автоматика. Стандартная проверка автоматических выключателей постоянного тока должна показывать невозможность повторного включения после срабатывания тепловых расцепителей.

Читайте так же:
Розетки выключатели для сруба

Как проверить дифференциальный автомат и УЗО

К сожалению, проверка у дифавтоматов, в условиях дома, таких важных характеристик как время срабатывания, перегрузочные характеристики, ток короткого замыкания не получится. Так как для проверки этих параметров необходимо иметь специальные приборы и оборудование.

Отличие дифавтомата от УЗО

Отличие дифавтомата от УЗО

Для дома вполне достаточно проверить дифференциальный автомат на срабатывание и соответствие току утечки защиты, при котором автомат отключается и обеспечивает защиту от поражения электрическим током. Дифференциальный автомат отличается от устройства УЗО только наличием автоматического выключателя. То есть это тот же УЗО плюс автомат в одном корпусе. Поэтому все проверки на пригодность дифавтомата аналогичны тестированию УЗО.

Виды проверок дифавтомата

Существует несколько способов проверки защитных устройств на работоспособность, это:

  1. Проверка кнопкой «ТЕСТ», расположенной на корпусе прибора.
  2. Обычной батарейкой от 1,5 В до 9 В.
  3. Резистором, имитирующим нарушение сопротивления изоляции электропроводки и бытовых приборов.
  4. Простым постоянным магнитом.
  5. Специальным электронным устройством для проверки параметров дифференциального автомата и УЗО используемых в промышленности.

Перед приобретением устройства защиты нужно знать, какие задачи оно будет выполнять. Для противопожарных целей дифавтомат и УЗО выбираются с током утечки 300 мА. Если необходима защита от поражения электрическим током, используется устройство с током утечки 30 мА. В сырых и влажных ванных помещениях или банях нужна защита с током утечки 10 мА.

Проверка кнопкой «ТЕСТ»

Эта кнопка расположена на лицевой стороне дифференциального автомата. Перед проверкой работоспособности устройства его подключают к сети. При нажатии на кнопку «ТЕСТ» защита отключает сеть. Кнопка «ТЕСТ» имитирует ток утечки, как при нарушении целостности изоляции проводов.

Проверка кнопкой тест

Проверка кнопкой тест

Нажатием этой кнопки происходит закорачивание нулевого провода входной клеммы и фазового провода на выходе устройства, через резистор, рассчитанный на ток 30 мА (или другой ток утечки, указанный на автомате). Устройство защиты отключается и обеспечивает защитную функцию. Такую проверку можно делать без нагрузки. Дифференциальный автомат может быть электромеханическим или электрическим, главное правильно подключить его к сети.

Проверка батарейкой

Проверяются такие устройства батарейкой 1,5 В — 9 В с номиналом тока утечки 10 — 30 мА. Прибор с меньшей чувствительностью 100 — 300мА от батарейки не сработает. Устройство защиты с характеристикой А сработает от батарейки подключенный к выводам любой полярностью.

Читайте так же:
Электромагнитный выключатель что это такое

Проверка батарейкой

Проверка батарейкой

А для приборов с характеристикой АС батарейку подключают одной полярностью, если устройство не сработает нужно поменять полярность батарейки (минус к выходу прибора, а плюс ко входу). Таким способом проверяются только электромеханические УЗО.

Проверка тока утечки резистором

Проверяется ток утечки дифференциального автомата резистором подключенным одним концом ко входу нулевого провода, а другим к выходу фазной клеммы. Для УЗО с током утечки 10 мА, 30 мА, 100 мА и 300 мА резистор рассчитывается по формуле: R =U/I Приблизительное значение резисторов для разных токов утечки: 10мА -22 ком, 30мА -7,3ком,100мА – 2,2ком и 300мА — 733 ом.

При проверке на ток срабатывания один конец подключается к выходной клемме фазы, а второй к входной клемме нулевого провода. УЗО должно быть подключено к сети (нагрузка не обязательна). При таком подключении резистора должна сработать защита. Иногда дифференциальный автомат не срабатывает. Это объясняется некоторым разбросом номинала резисторов.

Наглядно ток утечки проверяют последовательным соединением переменного резистора (для тока утечки 30мА)10 ком с мультиметром со шкалой переменного тока на 100 мА. Резистор желательно брать многооборотный, для плавного изменения сопротивления.

Подключают резистор с мультиметром, подают сеть на дифференциальный автомат и плавным вращением ручки резистора от максимума, засекают ток, при котором отключиться защитное устройство. Далее замеряют сопротивление переменного резистора, оно должно быть приблизительно для тока утечки 30 мА — 7,3ком. Это способ измерения пригоден для электромагнитных и электронных устройств.

Тестируем защиту постоянным магнитом

Магнитом проверить можно только электромеханическое устройство защиты, электронное устройство не сработает.

Проверка магнитом

Проверка магнитом

Это объясняется тем, что когда магнит подносится к одному из боков УЗО, постоянное электромагнитное поле воздействует на дифференциальный трансформатор и вызывает перекос потенциалов на выходе автомата, защита отключается. У электронного вида устройств такого дифференциального трансформатора нет.

Прибор для проверки дифференциальных автоматов и УЗО

В промышленности эти устройства защиты нашли широкое применение. Для их обслуживания и проверки параметров выпускаются электронные измерители тока типа UNI — TUT, которыми можно проверить практически все параметры устройства защиты, в том числе время срабатывания дифференциальных автоматов и УЗО.

Краткая периодичность в прогрузке автоматических выключателей

Испытания проводятся в соответствии с рекомендациями от производителя, но имеются сроки, жестко оговоренные нормативными актами. При эксплуатации в нормальном режиме и номинальном показателе тока периодичность составляет один раз в три года.

Читайте так же:
Номинальные токи автоматических выключателей свыше 100

Вам это будет интересно Самодельный ионистор

Важно! Если в процессе эксплуатации были аварийные сработки, то дополнительно проводится внеплановая проверка. Эти рекомендации распространяются на все приборы независимо от того, где они установлены: на производстве или в быту.

На основании действующих регламентов прогрузка на секционных или вводных аппаратах, осветительных сетях или охранных сигнализациях составляет 2 %. Для иных установок этот показатель 1 %.


Регламенты проверки

Если автоматы не соответствуют характеристикам производителя, то необходима проверка всей партии. После проведения работ на каждый прибор проставляется печать, где указана лаборатория, проводившая испытания. Это показатель, свидетельствующий о пригодности устройства к эксплуатации.

Испытание измерительных трансформаторов тока и напряжения

Перед началом испытаний проводят визуальный осмотр проверяя технический паспорт, состояние фарфора изоляторов, число и место установки заземлений вторичных обмоток. Проверка заземления вторичных обмоток выполняется там, где оно может безопасно отсоединяться без снятия высокого напряжения, на панели защиты.

Также проверяется резьба в ламелях зажимов трансформаторов тока. Трансформаторы класса токов Д и З проверяют на комплектность, номер комплекта должен совпадать.

Встроенные трансформаторы проверяют на сухость и устанавливают в соответствиями с надписями “верх”/”низ”. У выключателей с встроенными трансформаторами тока проверяют наличие уплотнения труб и сборных коробок, через которые проходят цепи трансформаторов тока.

При осмотре масляных трансформаторов удаляют резиновую шайбу из-под заливной пробки.

Проверка сопротивления изоляции обмоток

Мегаомметром на напряжение 1-2,5 кВ проверяют сопротивление первичной изоляции, каждой из вторичных обмоток и сопротивление между обмотками.

Испытание прочности изоляции обмоток производится напряжением 2 кВ на протяжении одной минуты.

Изоляцию вторичных обмоток разрешается испытывать одновременно с цепями вторичной коммутации переменным током напряжением 1 кВ в течение 1 мин.

Все испытания проводятся в соответствии с нормами.

Проверка полярности вторичных обмоток трансформаторов тока

Данная проверка проводится методом импульсов постоянного тока при помощи гальванометра.

Схема проверки полярности вторичных обмоток трансформаторов тока

Замыкая цепь контролируют направление отклонения стрелки прибора, при отклонении вправо, однополярные зажимы те, что присоединены к “плюсам” батареи и прибора. Для испытаний, в качестве источника тока, используются аккумуляторы или сухие батареи.

Проверка коэффициента трансформации трансформаторов тока

Нагрузочным трансформатором НТ в первичную обмотку подается ток, близкий к номинальному, не менее 20% номинального. Коэффициент трансформации проверяется на всех ответвлениях для всех вторичных обмоток.

Читайте так же:
Схема подключения проходных двойных выключателей elbi

Схема проверки коэффициента трансформации трансформаторов тока

Если на встроенных трансформаторах отсутствует маркировка, она восстанавливается следующим образом:

Подается напряжение Х автотрансформатора AT или потенциометра на два произвольно выбранных ответвления трансформатора тока. Вольтметром V измеряют напряжение между всеми ответвлениями. Максимальное значение напряжения будет на крайних выводах А и Д, между которыми заключено полное число витков вторичной обмотки трансформатора тока. На определенные таким образом начало и конец обмотки подают от автотрансформатора напряжение из расчета 1 В на виток (число витков определяют по данным каталога). После этого, измеряя напряжение по всем ответвлениям, которое будет пропорционально числу витков, определяют их маркировку.

Схема определения отпаек встроенных трансформаторов тока при отсутствии маркировки

Снятие характеристик намагничивания трансформаторов тока

Витковое замыкание во вторичной обмотке — самый распространенный дефект трансформаторов. Обнаруживается он во время проверки характеристик намагничивания, основных при оценке неисправностей, определении погрешностей. Выявляется дефект по снижению намагничивания и уменьшению крутизны.

При замыкании даже нескольких витков, характеристики резко снижаются.

Характеристики намагничивания при витковых замыканиях во вторичных обмотках

Полученные характеристики оцениваются сравнением с типовыми значениями, либо с данными полученными при проверке других однотипных трансформаторов с теми же коэффициентов и классом точности.

Не рекомендуется снимать характеристики реостатом, из-за возможности появления остаточного намагничивания стали сердечника трансформатора тока при отключении тока.

Схемы снятия характеристик намагничивания

В протокол проверки обязательно записывают по какой схеме проводилась проверка, для того чтобы полученные значения можно было использовать при следующих проверках.

Для трансформаторов высокого класса точности и с большим коэффициентом трансформации достаточно снимать характеристику до 220 В. При снятии характеристик намагничивания вольтметр включают в схему до амперметра, чтобы проходящий через него ток не входил в значение тока намагничивания. Амперметр и вольтметр, применяемые при измерениях, должны быть электромагнитной или электродинамической системы.

Пользоваться приборами детекторными, электронными и другими, реагирующими на среднее или амплитудное значение измеряемых величин, не рекомендуется во избежание возможных искажений характеристики.

Проверка трансформаторов напряжения

Проверка трансформаторов напряжения не отличается от проверки силовых трансформаторов. Отличается методы проверки дополнительной обмотки 5-стержневых трансформаторов напряжения типа НТМИ, так как обмотка соединена в разомкнутый треугольник.

Полярность проверяется поочередным подключением “плюса” батареи ко всем выводам обмотки, а “минус” остается нулевым. При верном подключении наблюдают отклонение стрелок гальванометра в одну сторону.

После включения трансформатора в сеть необходимо измерить напряжение небаланса.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector