Elektrikoff09.ru

Журнал "Электросети"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулируемые источники тока для светодиодов

PicHobby.lg.ua

В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.

Описание задумки.

Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.

Немного теории.

Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.

Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528

Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.

Ось У – ток через светодиод.

Ось Х – падение напряжения на светодиоде.

Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В. Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток. Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!

Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!

Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.

Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно. При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так). Получается, что падение напряжение на каждом светодиоде будет — 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.

При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде. Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них. Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.

Читайте так же:
Cv512h u50 уменьшить ток подсветки

О схеме.

Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.

Стабилизатор тока на полевом транзисторе схема

Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.

Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт. При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться. При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.

Настройка.

Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.

В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.

Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.

Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.

В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2. Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла. Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.

Читайте так же:
Схема простого акустического выключателя света

О печатной плате.

Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37×18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.

Печатная плата стабилизатора тока на полевом транзисторе

О деталях.

Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.

Емкостный бестрансформаторный источник питания

Схема бестрансформаторного емкостного источника питания представлена на рисунке. Значения, указанные для компонентов, зависят от параметров схемы, формулы для расчета этих значений приведены. L и N представляют собой фазовую линию и ноль сетевого напряжения переменного тока соответственно, а Vout — это выходное напряжение от источника питания. Выходной ток обозначен как Iout.

Пусковой ток, способный повредить компоненты источника питания, ограничивается резистором R1 и реактивным сопротивлением конденсатора C1. Элемент D1 — стабилитрон, обеспечивающий стабилизацию опорного напряжения, а D2 — обычный кремниевый диод, задачей которого является выпрямление переменного напряжения. Напряжение на нагрузке остается постоянным, пока выходной ток Iout меньше или равен входному току Iin, значение которого можно рассчитать как:

Где VZ — напряжение стабилитрона, VRMS — среднеквадратичное значение входного переменного напряжения, а f — его частота. Минимальное значение Iin должно соответствовать потребляемой мощности нагрузки, а максимальное значение используется для выбора соответствующей номинальной мощности для каждого элемента. Выходное напряжение Vout можно рассчитать как:

Где VD — напряжение прямого смещения D2 — падение напряжения на диоде (обычно 0,7 В для кремниевого диода). Что касается R1, рекомендуется выбирать элемент с мощностью, по крайней мере, в 2 раза превышающей значение теоретической мощности рассеиваемой на R1 (PR1), которая определяется формулой:

Конденсатор C1, от которого происходит название схемы этого типа, следует выбирать с напряжением по крайней мере, в 2 раза превышающим напряжение сети переменного тока (400 В минимум). Диод D1 должен иметь мощность как минимум в 2 раза больше теоретического значения, определяемого по следующей формуле:

То же самое относится к мощности диода D2, где только вместо VZ теперь можно использовать постоянное значение падения напряжения, например 0,7 В для типичного кремниевого выпрямительного диода. В случае C2 обычно используется электролитический конденсатор с напряжением в 2 раза превышающим напряжение VZ.

Основными преимуществами емкостного решения перед БП на основе трансформатора являются уменьшенный размер, вес и стоимость. По сравнению с блоком резистивного типа, эта схема обеспечивает более высокий КПД. Недостатком является отсутствие гальванической развязки выходного напряжения от электросети и более высокая стоимость, чем ограничение по сопротивлению.

Параметры питающей сети

При изготовлении любого устройства своими руками, необходимо определить параметры источника, который будет осуществлять питание светодиодов. Сеть 220 В, автомобильный аккумулятор на напряжение 12 В или простые батарейки – в любом случае необходимо определить диапазон питающего напряжения, то есть минимальное и максимальное его значение. На сеть 220 В дается (но не всегда соблюдается) допуск ±10%. Для аккумулятора берется в расчет напряжение при полной зарядке и в разряженном состоянии. С батарейками и так всё понятно.

Читайте так же:
Таблица сечений проводов по мощности медных кабеля

В случае с автономными источниками питания важно также узнать их емкость и максимальный выходной ток.

Как подобрать драйвер для светодиодов

В первую очередь необходимо определиться с типом драйвера. Он может быть:

  • Линейным.

Работает очень просто – за счет резистора R, выполняющего роль ограничителя, при изменении напряжения восстанавливает необходимый ток. На представленной схеме драйвера для светодиодов можно наглядно видеть принцип линейной регулировки тока.

Недостатком здесь считается тот факт, что через резистор тоже течет ток, из-за чего мощность бесполезно рассеивается просто на нагрев окружающего воздуха. Причем чем выше входное напряжение, тем больше потери. Плюс линейной схемы – простота. Такие драйверы недорого стоят и имеют достаточную надежность.

Линейные драйверы применяются для не слишком мощных светодиодов. У диодов с большим рабочим током драйвер будет потреблять больше энергии, чем сам световой элемент.

  • Импульсным.

Здесь драйвер только следит за током через светодиод и управляет ключом, собранным на транзисторе. Вместо резистора в схеме присутствует кнопка КН, а еще в нее добавлен конденсатор, который заряжается при нажатии этой кнопки, заставляя светодиод загораться. Конденсатор питает диод, пока ток не опустится ниже допустимого. После этого нужно вновь нажать кнопку КН.

Эта схема более эффективна для мощных светодиодов, поскольку здесь минимальные потери энергии. Ввиду сложной конструкции импульсные драйверы дороже стоят, но их применение окупается высокой производительностью и высоким качеством стабилизации тока.

Стоит также сказать про диммируемые драйверы. Они позволяют регулировать интенсивность света, который исходит от диодов, за счет изменения входных и выходных параметров тока. Еще диммируемый драйвер может менять цвет свечения. К примеру, при меньшей мощности белые диоды будут светить желтым светом, а при большей – синим.

При подборе драйвера необходимо обращать внимание на следующие характеристики:

  • входное и выходное напряжение;
  • выходная мощность;
  • выходной ток; .

Входное напряжение

При подборе входного напряжения драйвера необходимо учитывать напряжение источника питания, к которому будет подключен светодиодный светильник. Напряжение источника должно входить в диапазон значений входного напряжения драйвера.

Тип тока

Он может быть переменным AC или постоянным DC. Эту информацию, как и значения входного напряжения можно найти на корпусе самого драйвера. Для подключения от розетки ток должен быть переменным, а от бортовой сети автомобиля – постоянным.

Выходные параметры: напряжение, ток и мощность

При расчете драйвера для светодиодов необходимо учитывать тип их соединения. При последовательной схеме нужно сложить напряжения всех диодов цепочки. К примеру, для 3 светодиодов с током 300 мА и рабочим напряжением 3,3 В общее напряжение будет 3 · 3,3 = 9,9 В. Ток же остается одним для всех диодов – 300 мА. Выходит, что драйвер должен иметь выходной ток 300 мА и выходное напряжение 3,3 В.

Читайте так же:
Что нужно для установки светодиодной ленты работающей от розетки

Но при выборе не стоит искать драйвер именно с такими параметрами. Чаще всего устройство рассчитано на определенный диапазон. Именно в него должны укладываться рассчитанная величина напряжения и тока.

Разберем на рассматриваемом примере, как рассчитать драйвер для светодиодов по мощности:

  1. Мощность – это ток, умноженный на напряжение: P = I · U = 0,3 · 9,9 = 2,97 Вт.
  2. Рассчитанная мощность диодов равна мощности, которая должна быть у драйвера. Но нужно добавить запас 10-20%. Тогда получится, что оптимальным будет драйвер с мощностью от 2,97 · 1,1 = 3,27 до 2,97 · 1,2 = 3,5 Вт.

Степень защиты

Существуют драйверы в закрытом и открытом исполнении. В первом случае устройство имеет корпус, который защищает от влаги и пыли. Открытый драйвер лучше встраивать непосредственно в корпус светильника, если тот обладает хорошей защитой от окружающей среды. Если же у светильника есть вентиляционные отверстия или он будет установлен в таком помещении, как гараж, лучше выбрать драйвер с собственным корпусом.

Разновидности блоков питания

reguliruemyj-istochnik-pitaniya

На данном этапе развития блоки питания для разнообразных светодиодных светильников классифицируются на три категории:

  1. Открытый тип. Данный вариант является бюджетным, но громоздким, причем максимальная мощность питания светодиодов ограничивается отметкой в 100 Вт. Даже в силу своего низкого бюджета данное устройство редко используется в бытовом освещении, ведь его трудно сделать незаметным без привлечения посторонних предметов. Часто его прячут в шкафы, ниши или же распределительные щитки.
  2. Пластиковый каркас закрытого типа. Каркас самого блока питания герметичен и компактен, что позволяет его уложить между подвеской и базой потолка. Максимальна отметка мощности данного блока питания достигает отметки в 75 Вт. Для того, чтобы обеспечить количество ленты, рассчитанное ранее, придется покупать три блока, что является отрицательной чертой данного устройства.
  3. Алюминиевый каркас закрытого типа. Принцип работы данного устройства такой же, как и у предыдущего, но отличается большим весом и габаритами. Компенсируется это повышенной мощностью — 100 Вт. Чаще всего данный прибор применяется в уличном освещении. Корпус обладает хорошей герметичностью и защищен от физических воздействий окружающей среды.

Как подобрать драйвер для светодиодов

При приобретении драйвера для светодиодной ленты и лампы необходимо обратить внимание, прежде всего, на выходное напряжение. У подавляющего большинства устройств оно указывается в виде диапазона. На рынке реализуется множество устройств с рабочим интервалом выходного напряжения то 2 В до полусотни и более.

Самодельные светодиодные гирлянды светильники для декорирования помещений

Самодельные светодиодные гирлянды светильники для декорирования помещений

К примеру, если необходимо получить источник света из трех последовательно соединенных светодиодов белого света с мощностью 1 Вт каждый, то необходимо взять драйвер с эксплуатационными характеристиками U – 9÷12 В, I – 350 мA. Падение напряжения для кристаллов белого цвета составляет около 3,3 В. Следовательно при последовательном соединении эти значения суммируются и составляют 9,9 В, что полностью удовлетворяет показателям рабочего диапазона драйвера для светодиода.

Практический совет! Для светодиодных лампы мощностью более 10 Вт целесообразно использовать импульсные драйвера, желательно собранные на микросхеме UCC28810.

Основные характеристики светодиодов

Как и любой диод, LED имеет общие, «диодные» характеристики. Предельные параметры, превышение которых ведет к выходу прибора из строя:

  • максимально допустимый прямой ток;
  • максимально допустимое прямое напряжение;
  • максимально допустимое обратное напряжение.
Читайте так же:
Что такое ток включения светодиода

Остальные характеристики носят специфический «светодиодный» характер.

Цвет свечения

Цвет свечения – этот параметр характеризует СД оптического диапазона. У осветительных приборов в большинстве случаев белый с различной световой температурой. У индикаторных может быть любым из видимой цветовой гаммы.

Длина волны

Этот параметр в определенной степени дублирует предыдущий, но с двумя оговорками:

  • у приборов ИК и УФ диапазонов видимого цвета нет, поэтому для них эта характеристика единственная, характеризующая спектр излучения;
  • этот параметр больше применим для светодиодов с непосредственным излучением – элементы с люминофором излучают в широкой полосе, поэтому однозначно их свечение длиной волны не охарактеризовать (какая длина волны может быть у белого цвета?).

Поэтому длина излучаемой волны – достаточно информативная цифра.

Потребляемый ток

Потребляемый ток – это рабочий ток, при котором яркость излучения оптимальна. При его небольшом превышении не происходит скорого выхода прибора из строя – и в этом его отличие от максимально допустимого. Снижение его также нежелательно – интенсивность излучения упадет.

Мощность

Потребляемая мощность – здесь все просто. На постоянном токе – это просто произведение потребляемого тока на приложенное напряжение. Путаницу в это понятие вносят производители светотехники, указывая на упаковке крупными цифрами эквивалентную мощность – мощность лампы накаливания, световой поток которой равен потоку данного светильника.

Видимый телесный угол

Кунусообразный видимый телесный угол свечения светодиода.

Видимый телесный угол проще всего представить в виде конуса, исходящего из центра источника света. Данный параметр равен углу раскрыва этого конуса. Для индикаторных светодиодов он определяет, как срабатывание сигнализации будет видно со стороны. Для осветительных элементов от него зависит световой поток.

Максимальная сила света

Максимальная сила света в технических характеристиках прибора указывается в канделах. Но на практике удобнее оказалось оперировать понятием светового потока. Световой поток (в люменах) равен произведению силы света (в канделах) на видимый телесный угол. Два светодиода с равной силой света дают разное освещение при разном угле. Чем больше угол, тем больше световой поток. Так удобнее для расчета систем освещения.

Падение напряжения

Падение напряжения при прямом токе – это напряжение, которое падает на светодиоде в открытом состоянии. Зная его, можно рассчитать напряжение, потребное, например, для открывания последовательной цепочки светоизлучающих элементов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector