Elektrikoff09.ru

Журнал "Электросети"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сенсорная клавиатура на AVR

Сенсорная клавиатура на AVR

sensor keyboard

Современные микроконтроллеры имеют все, что необходимо для реализации сенсорной клавиатуры, чувствительной к прикосновению пальцев. Существует несколько методов реализации емкостных датчиков — многие фирмы-производители микроконтроллеров рекомендуют использовать свои библиотеки. Мне было любопытно попробовать самостоятельно реализовать сенсорную матрицу основываясь только на теоретическом описании технологии и вот что из этого получилось.

Trema-модуль Сенсорная кнопка построена на базе чипа TTP223 и предназначена для коммутации электрических цепей и широко используется в радиоэлектронной аппаратуре.

Trema-модуль Сенсорная кнопка имеет четыре вывода: GND (G), Vcc (V), Signal (K), Trigger(T). В не нажатом состоянии на выходе K присутствует уровень логического «0» (выход прижат к GND через резистор). В нажатом состоянии на выходе K устанавливается уровень логической «1» (выход соединяется с Vcc). Вывод T используется для перевода кнопки в режим триггера — режим, при котором кнопка работает как выключатель с защёлкой. Для этого достаточно подать на вывод T логическую «1». Чтобы кнопка работала в обычном режиме, подайте на выход T логический «0» или отключите данный вывод.

Для работы с модулем нужно сконфигурировать вывод Arduino, подключённый к выходу K, как вход, а к выводу T как выход.

При считывании показаний с модуля нужно учитывать такое явление, как дребезг контактов. При нажатии или отпускании кнопки, её контакты сначала многократно и неконтролируемо замыкаются и размыкаются по причине того, что чип сенсора может улавливать воздействие руки в пограничной зоне, а постоянный логический уровень устанавливается только после окончания дребезга. Это значит, что если 1 раз нажать на кнопку и отпустить её, то алгоритм программы может зафиксировать многократное нажатие на кнопку, если в нём не учитывается подавление дребезга.

Для подавления влияния дребезга на алгоритм скетча, нужно после фиксации изменения логического уровня на выходе кнопки выдержать паузу, равную или превышающую время дребезга.

Запись из жизни

24.03.2015 | Покупка, Своими руками, Электро | 1 | Автор: Кирилл

Меня заинтересовал светодиодный светильник, выполненный в виде металлической пластины, которая к тому же сенсорная, и при нажатие на которую можно включать, выключить или регулировать яркость. Если регулировка яркости еще спорный вопрос, особенно в светильнике мощностью 3-7 Вт + дополнительное касание, то включение и выключение, в компактном решении без кнопок смотрится как минимум современно.

В интернете есть множество схем того или иного исполнения, по большей степени собирающихся на коленке, но если рассматривать реальный сенсорный выключатель своими руками, малых размеров, то это готовое решение на микросхеме.

Сенсорный выключатель

На китайских интернет площадках есть в продаже SJT5101 , мне удалось найти SJT5101 datasheet:
Фото SJT5101
Схема включения дана в datasheet, но мне удалось найти вменяемую и понятую не только нашим узкоглазым друзьям:
Схема включения SJT5101
SJT5101 недорогой одноканальный датчик с емкостным сенсорном, предназначенный для одностороннего сенсорного переключений нагрузки электронных приборов в одно касание. SJT5101 имеет форм фактор SOT-23-6, низкое энергопотребление ( 1,5. 3 мкА потребление SJT5101) и простой схемой включения.

Для регулировки чувствительности и стабильности необходимо подобрать конденсатор (см. конденсатор на схеме CS), хорошая стабильность работы при изменении: температуры и влажности без влияния на чувствительность на окружающую среду и стабильности работы схемы в целом. Напряжение питания доступно в диапазоне напряжений 2.5 . 5 Вольт постоянного тока, ток в режиме ожидания составляет всего 3.6 мкА (потребление схемы).

Регулируемый сенсорный выключатель

Продолжаем искать достойный сенсорный выключатель своими руками, но теперь с возможностью диммирования (регулирования мощности на нагрузке).

SJT0804 — datasheet, здесь добавилась регулировка мощности на PWM ( ШИМ — широтно-импульсная модуляция ), и возможность подключения ИК приемника, для удаленного управления. Технические характеристики:

  • Напряжение питания: 3,3-5,5 Вольт
  • Ток потребления в режиме покоя: 120 мкА
  • Рабочий ток потребления: 1 мА

Схему выкладывать не буду, так как datasheet имеет неплохое описание.

Простой сенсорный выключатель

TTP223 схема включения

TTP223 — пожалуй лучшее решение, ничего лишнего. Судите сами:
Простая схема, похожа на первую:

Технические характеристики:
Напряжение питания: 2-5,5 Вольт
Ток потребления: 1,5 . 3 мкА
Быстрый режим: 3,5 . 7 мкА
Легче купить .
Вывод TOG для включения быстрого режима включения, отключает экономный режим потребления.
Вывод AHLB инвертирует вывод с 0 на 1 или наоборот при нормальном срабатывании.

Задание 3. Логика работы мс К155ТМ2 и К155ИЕ5.

ZuykovAV MEPhI » 13 мар 2011, 21:31

1. Проверка логики работы D-триггера — микросхема К155ТМ2.
2. Делители на D-триггерах.
3. Проверка логики работы счётчика — микросхема К155ИЕ5.
4. Делители частоты на счётчике — микросхема К155ИЕ5.

Читайте так же:
Схема подключения простого выключателя с 2х мест

Re: Задание 3

KovalchukDV 1523 » 14 мар 2011, 16:08

Re: Задание 3

ZuykovAV MEPhI » 15 мар 2011, 00:41

Изображение
Стр. 75-76, "Популярные цифровые микросхемы", Валерий Леонидович Шило.

Re: Задание 3

ZuykovAV MEPhI » 15 мар 2011, 00:45

1. Проверка логики работы D-триггера -микросхема K155ТМ2 .

— описание схемы,
— сборка схемы,
— проверка логики.

На схеме показан один D-триггер — элемент микросхемы К155ТМ2 (D1 — всего в микросхеме два D-триггера). У элемента есть входы R и S, вход данных D, тактовый вход C и два выхода — прямой Q (5) и инверсный (6). Обратите внимание на кружок у вывода 6 и вспомните обозначение выхода элемента ЛА3 (в нём также обозначается инверсия).

К входам R, S, D, C триггера подключены кнопки. При нажатии любой из кнопок соответствующий вход будет соединён с землёй (GND), значит, на нём будет логический ноль. Если на кнопку не нажимать, то на входах будет присутствовать уровень логической 1, так как сопротивления R1-R4 (1 кОм) вторыми выводами подключены к линии VCC. На следующем изображении показаны уровни состояний на входах при работе с кнопками (при нажатии — стрелка вниз и отпускании кнопки — стрелка вверх) :

Для индикации состояний к выходам триггера (прямой — 5 и инверсный — 6) через сопротивления R5, R6 (1кОм) подключены светодиоды VD1, VD2. Светодиоды подключены катодами к линии GND и поэтому будут светиться при логической единице на выходе триггера.

1) Отключите питание от макетной платы.

2) Соберите схему. Светодиоды расположите на макетке так, чтобы было понятно, где расположен VD1 (прямой выход микросхемы), а где — VD2 (инверсный). Выводы (8,9,10,11,12,13) второго элемента микросхемы могут висеть в воздухе. На изображении не установлены сопротивления R1-R4.
3) Проверьте правильность сборки.
4) Подайте питание.

После подачи питания один из двух светодиодов должен светиться.

Логика работы RS входов такая же как и во 2-ом задании (схема RS-триггера на элементах 2И-НЕ мс К155ЛА3).
При нажатии на R (тут KN1) прямой выход сбрасывается в 0 (светодиод VD1 не светится).
При нажатии на S (тут KN4) прямой выход устанавливается в 1 (светодиод VD1 светится).

Проверка логики работы триггера.

— Установка ( S etting) и Сброс ( R eset). Активным уровнем для входов R и S является 0:
при S = 0 на выходе выполняется Установка; Q = 1
при R = 0 на выходе происходит Сброс; Q = 0

— Запись. Если S=1 и R=1, то в момент положительного перепада на С состояние с D переходит на Q.

— Проверка логики работы входов RS (строки 1, 2, 3 по таблице).
— Проверка записи сигнала с входа D (строки 4, 5).
— Уточнение момента записи на тактовом входе С (для строк 4,5).

Проверка логики работы входов R и S (асинхронный Сброс и Установка):

1. Нажмите только на кнопку KN4 (S=0) и на прямом выходе Q (5) установится уровень логической 1 и поэтому светодиод VD1 будет светиться. Светодиод VD2 не будет светиться, так как на инверсном выходе (6) будет низкий уровень.

2. Нажмите только на кнопку KN1 (R=0) и светодиод VD1 погаснет, значит, на прямом выходе Q (5) происходит сброс в 0. Светодиод VD2 светится, так как на инверсном выходе (6) будет 1.

Итак,
при S=0, прямой выход Q = 1, на инверсном — 0 (асинхронная установка в 1),
при R=0, прямой выход Q = 0, на инверсном — 1 (асинхронный сброс в 0).

Вход S (Setting-Установка) служит для установки прямого выхода в 1, а вход R (Reset — Сброс) служит для сброса прямого выхода в 0. Они являются асинхронными входами, так как изменяют состояние триггера в любой момент времени, независимо от состояния входов D и C (в таблице показан знак Х). Чтобы происходили Сброс или Установка, на вход R или S должен подаваться низкий уровень.

При одновременном удержании кнопок KN1 и KN4 оба светодиода засветятся, так как на обоих выходах (прямом и инверсном) устанавливается высокий уровень. Этот режим работы элемента очень редко используется в схемотехнике.

Проверяем логику работы входа D (загрузка 1 или 0, строка 4 и 5 таблицы):

Один раз нажмите на кнопку KN1, чтобы светодиод VD1 не светился. Далее кнопки KN1 и KN4 нажимать не надо, чтобы на входах R и S были логические 1.

Читайте так же:
Питание контроллера от выключателя

4. Кратковременно нажмите на кнопку KN3 (на тактовый вход С поступит импульс, поз. 2-3) и тогда должен засветиться светодиод VD1, так как на прямом выходе Q (5) устанавливается высокий уровень (поз.3). Светодиод VD2 не будет светиться, так как на инверсном выходе (6) низкий уровень.

5. Нажмите на кнопку KN2 (вход D = 0, поз.4 по диаграмме ниже) и удерживая её, кратковременно нажмите на кнопку KN3 (на тактовый вход С поступил импульс, поз.5-6) и светодиод VD1 должен погаснуть, так как на прямом выходе Q (5) устанавливается низкий уровень (поз.6). Светодиод VD2 засветится, так как на инверсном выходе (6) будет высокий уровень.

Итак, что происходит при подаче импульса на вход C ?
при D=1, прямой выход Q = 1 (В), на инверсном — 0 (Н); говорят: загрузка 1, запись 1, перенос 1 с D на Q.
при D=0, прямой выход Q = 0 (Н), на инверсном — 1 (В); говорят: загрузка 0, запись 0, перенос 0 с D на Q.

В какой момент времени происходит запись ?

Сигнал с входа D переходит на выход Q при подаче импульса на вход C. А точнее, при переходе от 0 к 1 ( или говорят, при положительном фронте импульса , поз. 3 и 6). Обратите внимание по схеме на косую черту (снизу вверх) у входа C элемента ТМ2. Чтобы убедиться в этом, повторите действия 4-5, но кнопку KN3 нажимайте не кратковременно, а в начале нажмите и только через короткую задержку отпустите. Обратите внимание, что переключение состояния светодиодов почти всегда будет происходить в момент отпускания кнопки (поз. 3 и 6). Ведь когда кнопка нажата – это низкий уровень, а когда отпускаете – становится высокий уровень, то есть, при отпускании и происходит перепад от низкого уровня к высокому уровню (от 0 к 1).

Управление входами R и S имеет приоритет по отношению к входу D и С. То есть, сбрасывать выход Q в 0 (0 на R) или устанавливать на Q выходе 1 (0 на S) можно независимо от состояния на входах D и C и поэтому можно понажимать на кнопки KN1 и KN4 при выполнении 4 и 5 пунктов.

Алгоритм написания кода для подключения динамической индикации

Для большей конкретизации действий будем применять 4-х разрядный семисегментный индикатор с общим катодом. Первым делом следует создать массив цифр от 0 до 9. Этому мы уже научились ранее, вот здесь. Далее необходимо разбить 4-х значное число на четыре отдельных цифры. Например, число 1987 нужно разбить на 1, 9, 8 и 7. Затем единицу нужно отобразить в первом разряде индикатора, девятку – во втором, восьмерку – в третьем и семерку – в четвертом.

Среди многих алгоритмов разбивки многозначного числа на отдельные числа мы воспользуемся операциями деления и остатком от деления. Рассмотрим пример:

В языке С при использовании целочисленного типа данных int при выполнении деления все десятые, сотые и т. д., то есть все числа меньше единицы отбрасываются. Остаются только целые числа. Математическое округление здесь не работает, то есть 1,9 в данном случае будет 1, а не 2.

Команда “остаток от деления” обозначается знаком процента «%». Данная команда отбрасывает все целые числа и оставляет остальную часть числа. Например, 1987%1000 → 987; 1987%100 → 87; 1987%10 → 7.

Далее следует написать команду, которая сначала отобразит первый разряд и соответствующее ему число, потом, через некоторый промежуток времени, второй разряд и отвечающее ему число; и так далее. Ниже приведен код с комментариями.

#define F_CPU 1000000L

#include <avr/io.h>

#include <util/delay.h>

#define CHISLO PORTD

#define RAZRIAD PORTB

unsigned int razr1 = 0, razr2 = 0, razr3 = 0, razr4 = 0;

unsigned int chisla [10] = <

// числа от 0 до 10

0x3f, 0x6, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x7, 0x7f, 0x6f

void vse_chislo (unsigned int rabivka_chisla)

razr1 = rabivka_chisla/1000; // тысячи

razr2 = rabivka_chisla%1000/100; // сотни

razr3 = rabivka_chisla%100/10; // десятки

razr4 = rabivka_chisla%10; // единицы

int main(void)

DDRB = 0b00001111;

DDRD = 0b11111111;

RAZRIAD = 0b00000001; // изначально 1-й разряд

CHISLO = 0x3f; // число 0

while (1)

vse_chislo(1987); // отображаемое число

RAZRIAD = 0b00000001; // включаем 1-й разряд, остальные выключаем

CHISLO = chisla [razr1]; // отображаем 1-ю цифру

_delay_ms(3);

RAZRIAD = 0b00000010; // включаем 2-й разряд, остальные выключаем

Читайте так же:
Номиналы автоматических выключателей 250а

CHISLO = chisla [razr2]; // отображаем 2-ю цифру

_delay_ms(3);

RAZRIAD = 0b00000100; // включаем 3-й разряд, остальные выключаем

CHISLO = chisla [razr3]; // отображаем 3-ю цифру

_delay_ms(3);

RAZRIAD = 0b00001000; // включаем 4-й разряд, остальные выключаем

CHISLO = chisla [razr4]; // отображаем 4-ю цифру

_delay_ms(3);

Сенсорная кнопка-модуль TTP223B

Миниатюрная плата размером 14,5 х 11 мм. Куплена для экспериментов в одном экземпляре, примерно за 21 руб. На плате есть 3 выводных отверстия под хедер и поверхностные контактные площадки под конденсатор регулировки чувствительности, а также «перемычки» A и B для программирования режимов работы.

Микросхема.

По сути вся схема платы-кнопки образованна крошечной микросхемой TTP223B в корпусе SOT-23-6L.

Размер корпуса микросхемы 3 х 1.5 мм.

Информация из даташита:

Распиновка ног микросхемы.

Package Type SOT-23-6L
TTP223-BA6 PACKAGE CONFIGURATION

Pad No.Pad NameI/O TypePad Description
1QOCMOS output pin
2VSSP Negative power supply, groundP Negative power supply, ground
3II/O Input sensor portI/O Input sensor port
4AHLBI-PLOutput active high or low selection,1=>Active low; 0(Default)=>Active hi
5VDDPPositive power supply
6TOGI-PLOutput type option pin,1=>Toggle mode; 0(Default)=>Direct mode

Базовая схема подключения микросхемы (из даташита).

Пояснения работы.

Всё что нужно, чтобы использовать «кнопку» в схеме — это подать на нее питание VCC (VDD) (от +2 до +5.5 в) и соединить её с общим проводником GND в схеме. На выводе I/O , в зависимости от конфигурации, будет напряжение (от +2 до +5.5 в) , которое будет управлять подключенным реле или микроконтроллером.

Сенсор может срабатывать не только от прикосновения, но и от поднесения руки на расстояние примерно около полсантиметра, а так же от находящегося в непосредственной близости источника электромагнитного поля, например сетевого провода 220 в.

Режимы работы / Программирование.

На плате предусмотрены две пары контактных площадок для установки перемычек: A и B (по умолчанию они не замкнуты).

Замкнут A — Электронная «кнопка» замкнута, размыкание происходит только в момент прикосновении.
Замкнут B — «Кнопка» работает в режиме фиксации. Коснулся, убрал руку — цепь замкнута. Коснулся еще раз, убрал руку — цепь разомкнута.
Замкнут A и B — По сути это такой же режим как и «замкнут B«, только при подаче питания кнопка будет замкнута, и при первом прикосновении разомкнется.
Не замкнуто ни чего — Временное замыкание, работает как нефиксируемая кнопка, прикоснулся — цепь замкнута, убрал руку — цепь разомкнулась.

Также можно отрегулировать чувствительность срабатывания сенсора, установив конденсатор до 50 пФ. Например, если емкость ближе к 0 пФ, то достаточно просто поднести руку на расстояние примерно до 5 мм к выделенной области «touch», а если увеличить емкость до 50 пФ и более, то чтобы вызвать срабатывание, необходимо прикоснуться уже прямо к оголенному проводнику-контакту сенсора.

SMD светодиод, расположенный на модуле «загорается», свидетельствуя о том, что «кнопка» находится в режиме «замкнуто».

Бракованный модуль.

Кроха пришла ко мне уже давно, я ее убрал в коробочку и не проверял, а когда пришло время испытать ее, она оказалось с браком, причем довольно критичным. Так как я еще не имел дел с такими сенсорными кнопками, сначала никак не мог понять, почему ничего не хочет работать, и к тому же слегка греются контакты в макетной плате. Прозвонил ножки VCC и GND — между ними обнаружилось замыкание.

Очень внимательно разглядывал модуль — всё было в порядке. В итоге пришлось отпаять 6-ногую микросхему — оказалось, что под ней дорожки не разделены, видимо не протравились при изготовлении, более того, GND еще и замкнут на одну дорожку, идущую к контактной площадке «A».

Разделил дорожки, процарапав медное покрытие иголкой. Запаял микросхему на место — и к моему удивлению, всё заработало как надо!

Тест работы сенсорной кнопки с Bluetooth модулем CSRA64215.

Ссылки связанные с модулем:

Изготовление печатной платы: Часть 1 и Часть 2

Схема подключения сенсорного модуля очень проста, в сравнении с обычной кнопкой, дополнительно потребуется соединить его только с GND. Несмотря на то, что у TTP223 заявленное рабочее напряжение от +2 до +5.5 в, микросхема без проблем заработала от +1.8 в.

Устройство микроволновки

Устройство микроволновки

Главная деталь в любой СВЧ печи – это магнетрон. Магнетрон – это такая специальная вакуумная лампа, которая создаёт СВЧ-излучение. СВЧ-излучение весьма интересным образом воздействует на обычную воду, которая содержится в любой пище.

Читайте так же:
Производство автоматических выключателей контактор

При облучении электромагнитными волнами частотой 2,45 ГГц молекулы воды начинают колебаться. В результате этих колебаний возникает трение. Да, обычное трение между молекулами. За счёт трения выделяться тепло. Оно то и разогревает пищу изнутри. Вот так вкратце можно объяснить принцип действия микроволновки.

Конструкция микроволновки.

Конструктивно микроволновая печь состоит из металлической камеры, в которой приготавливается пища. Камера снабжена дверцей, которая не позволяет излучению выйти наружу. Для равномерного разогрева пищи внутри камеры установлен вращающийся столик, который приводится в движение мото-редуктором (мотором), который сокращённо называется T.T.Motor (Turntable motor).

Конструкция микроволновой печи

СВЧ-излучение генерируется магнетроном и через прямоугольный волновод подаётся в камеру. Для охлаждения магнетрона во время работы служит вентилятор F.M (Fan motor), который прогоняет холодный воздух через магнетрон. Далее нагретый воздух от магнетрона через воздуховод направляется в камеру и также используется для нагрева пищи. Через специальные неизлучающие отверстия часть нагретого воздуха и водяной пар выводится наружу.

В некоторых моделях СВЧ-печей для формирования равномерного нагрева пищи используется диссектор, который устанавливается в верхней части камеры микроволновки. Внешне диссектор напоминает вентилятор, но он предназначен для создания определённого типа СВЧ-волны в камере так, чтобы осуществлялся равномерный прогрев пищи.

Электрическая схема микроволновки.

Давайте взглянем на упрощённую электрическую схему рядовой микроволновки (кликните для увеличения).

Схема СВЧ-печи

Как видим, схема состоит из управляющей части и исполнительной. Управляющая часть, как правило, состоит из микроконтроллера, дисплея, кнопочной или сенсорной панели, электромагнитных реле, зуммера. Это "мозги" микроволновки. На схеме всё это изображено отдельной платой с надписью Power and Control Curcuit Board. Для питания управляющей части микроволновки используется небольшой понижающий трансформатор. На схеме он отмечен как L.V.Transformer (показана только первичная обмотка).

Микроконтроллер через буферные элементы (транзисторы) управляет электромагнитными реле: RELAY1, RELAY2, RELAY3. Они включают/выключают исполнительные элементы СВЧ-печи в соответствии с заданным алгоритмом работы.

Исполнительные элементы и цепи — это магнетрон (Magnetron), мото-редуктор столика T.T.Motor (Turntable motor), охлаждающий вентилятор F.M (Fan Motor), ТЭН гриля (Grill Heater), лампа подсветки O.L (Oven Lamp).

Особо отметим исполнительную цепь, которая является генератором СВЧ-излучения.

Начинается эта цепь с высоковольтного трансформатора (H.V.Transformer). Он самый здоровый в микроволновке. Собственно, это и не удивительно, ведь через него нужно прокачать мощность в 1500 — 2000 Вт (1,5 — 2 kW), необходимых для магнетрона. Выходная же (полезная) мощность магнетрона 500 — 850 Вт.

Внешний вид магнетрона и элементы его конструкции

К первичной обмотке трансформатора подводится переменное напряжение сети 220V. С одной из вторичных обмоток снимается переменное напряжение накала 3,15V. Оно подводится к накальной обмотке магнетрона. Накальная обмотка необходима для генерации (эмиссии) электронов. Стоит отметить, что ток, потребляемый этой обмоткой, может достигать 10A.

Другая вторичная обмотка высоковольтного трансформатора, а также схема удвоения напряжения на высоковольтном конденсаторе (H.V.Capacitor) и диоде (H.V. Diode) создаёт постоянное напряжение в 4kV для питания анода магнетрона. Ток анода небольшой и составляет где-то 300 мА (0,3A).

В результате электроны, эмитированные накальной обмоткой, начинают своё движение в вакууме.

Особая траектория движения электронов внутри магнетрона создаёт СВЧ-излучение, которое и нужно нам для нагрева пищи. СВЧ-излучение отводится из магнетрона с помощью антенны и поступает в камеру через отрезок прямоугольного волновода.

Вот такая несложная, но весьма изощрённая схема является неким СВЧ-нагревателем. Не стоит забывать, что сама камера СВЧ-печи является элементом данного СВЧ-нагревателя, так как представляет, по сути, резонатор, в котором возникает электромагнитное излучение.

Кроме этих элементов в схеме микроволновой печи есть множество защитных элементов (см. термовыключатели KSD и аналоги.). Так, например, термовыключатель контролирует температуру магнетрона. Его штатная температура при работе где-то 80° – 100°C. Этот термовыключатель крепится на магнетроне. По умолчанию он не показан на упрощённой схеме.

Другие защитные термовыключатели подписаны на схеме, как OVEN THERMAL CUT-OUT (устанавливается на воздуховоде), GRILL THERMAL CUT-OUT (контролирует температуру гриля).

Элементы микроволновой печи

При наличии нештатной ситуации и перегреве магнетрона термовыключатель размыкает цепь, и магнетрон перестаёт работать. При этом термовыключатель выбирается с небольшим запасом — на температуру отключения 120 – 145°C.

Расположение термовыключателей на элементах СВЧ-печи

Весьма важными элементами микроволновой печи являются три переключателя, которые встроены в правый торец камеры СВЧ-печи. При закрытии передней дверцы два переключателя замыкают свои контакты (PRIMARY SWITCH – главный выключатель, SECONDARY SWITCH– вторичный выключатель). Третий – MONITOR SWITCH (контрольный выключатель) – размыкает свои контакты при закрытии дверцы.

Читайте так же:
Трехклавишный выключатель для внутренней установки

Пример расположения переключателей

Неисправность хотя бы одного из этих выключателей приводит к неработоспособности микроволновки и срабатыванию плавкого предохранителя (Fuse).

Чтобы снизить помехи, которые поступают в электросеть при работающей СВЧ-печи, имеется сетевой фильтр — NOISE FILTER.

Сетевой фильтр в корпусе микроволновки

Дополнительные элементы микроволновки.

Кроме базовых элементов конструкции, микроволновка может быть оснащена грилем и конвектором. Гриль может быть выполнен в виде нагревательного элемента (ТЭН’а) или инфракрасных кварцевых ламп. Эти элементы микроволновки очень надёжны и редко выходят из строя.

Нагревательные элементы гриля: металло-керамический (слева) и инфракрасный (справа).

Металло-керамический и кварцевый нагреватели

Инфракрасный нагреватель представляет собой 2 последовательно включенные инфракрасные кварцевые лампы на 115V (500 — 600W).

В отличие от микроволнового нагрева, который происходит изнутри, гриль создаёт тепловое излучение, которое разогревает пищу снаружи внутрь. Гриль разогревает пищу медленнее, но без него невозможно приготовить поджаристую курочку .

Конвектор — это, не что иное, как вентилятор внутри камеры, который работает в паре с нагревателем (ТЭН’ом). Вращение вентилятора обеспечивает циркуляцию горячего воздуха в камере, что способствует равномерному прогреву пищи.

Про фьюз-диод, высоковольтный конденсатор и диод.

Элементы в цепи питания магнетрона обладают интересными свойствами, которые нужно учитывать при ремонте микроволновки.

Так, по умолчанию, высоковольтный конденсатор (H.V.Capacitor) имеет встроенный резистор.

Параллельное включение резистора на 10МОм и конденсатора

Он служит для разряда конденсатора. Дело в том, что конденсатор находится под высоким напряжением (2 кВ), и поэтому после выключения СВЧ-печи требуется его разряд. Это предохранительная мера. Также бывает, что резистор внутри конденсатора перегорает, и конденсатор не разряжается. Поэтому перед проведением ремонта микроволновки рекомендуется принудительно разряжать конденсатор на корпус.

Высоковольтный конденсатор для СВЧ

Внешний вид высоковольтного конденсатора 1.0µF * 2100V AC.

Высоковольтный диод (H.V. Diode) является комбинированным элементом и состоит из целой вереницы последовательно включенных диодов. Это позволяет составному диоду работать с высоким напряжением. Но в этом кроется подвох. Дело в том, что протестировать такой диод стандартной методикой проверки не удастся. Мультиметр просто не сможет "открыть" такой диод из-за того, что пороговое (прямое) напряжение отпирания (VF) диодов складываются. В результате в прямом и обратном включении высоковольтный диод будет иметь высокое сопротивление.

Так, например, для диода HVR-1X3 максимальное прямое напряжение (VF) составляет 11V. Если учесть, что обычно падение напряжения на переходе в прямом включении (VF) у кремниевых диодов составляет 1 — 1.1V, то получается, что в диоде HVR-1X3 ориентировочно смонтировано 10 последовательно включенных диодов.

Высоковольтный диод

Максимальное постоянное обратное напряжение такого диода — 12kV!

В некоторых микроволновых печах параллельно высоковольтному конденсатору устанавливается фьюз-диод (защитный диод). По сути, фьюз-диод — это двунаправленный высоковольтный супрессор. Он служит для того, чтобы защитить конденсатор от завышенного рабочего напряжения, которое чревато выходом из строя последнего. Но на практике чаще бывает так, что он сам и выходит из строя. В таком случае ремонтники просто удаляют его из цепи, как ненужный аппендикс. На деле оказалось, что микроволновки прекрасно работают и без такого диода.

Для тех, кто желает более детально разобраться в устройстве СВЧ-печей, подготовлен архив с сервисными инструкциями микроволновых печей (Daewoo, SANYO, Samsung, LG). В инструкции приведены принципиальные схемы, схемы разборки, рекомендации по проверке элементов, список комплектующих.

Изоляция: Оптоизолятор

Иногда схема, с которой должен взаимодействовать микроконтроллер, может представлять слишком много проблем, таких как электростатический разряд (ESD), широкие колебания напряжения и непредсказуемость. В таких ситуациях мы можем использовать устройство, называемое оптоизолятором, которое позволяет двум цепям общаться, не будучи физически соединенными друг с другом с помощью проводов.

Оптоизоляторы взаимодействуют с использованием света, когда одна цепь излучает свет, который затем обнаруживается другой схемой. Это означает, что оптоизоляторы не используются для аналоговой связи (например, уровни напряжения), но вместо этого для цифровой связи, где выход включен или выключен. Оптоизоляторы могут использоваться как для входов, так и для выходов на микроконтроллеры, где входы или выходы могут быть потенциально опасны для микроконтроллера. Интересно, что оптоизоляторы также могут использоваться для смещения уровня!

Пример использования optoisolation для защиты вашего микроконтроллера

Пример использования optoisolation для защиты вашего микроконтроллера

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector