Стабилизатор тока на двух транзисторах (схема, плата, сборка, испытание)
Пусть наша нагрузка это R, будем считать, что её сопротивление почти не изменяется (R = const), ток мы хотим неизменный (I = const), а что у нас остаётся – только выходное напряжение на источнике тока, его то и будет подбирать схема, причём не просто от балды, а именно такое, при котором через вышеупомянутою нагрузку R потечёт ровно тот ток I, на который рассчитано устройство.
А вот разбор работы самой схемы:
Примечание. Детали для данного экземпляра взяты со старых плат, в частности мощный полевой N-канальный транзистор MTD20N06V в DPAK (TO-252) исполнении с материнки, у него сопротивление открытого канала 65 мОм, а максимальное длительно приложенное напряжение затвор-исток 20 Вольт, питается схема от БП 12 Вольт (скачки напряжения не более нескольких Вольт), поэтому диод Зенера не понадобится. Биполярный транзистор – это известный BC847A в SOT-23 корпусе. Резистор R1 = 11 кОм, R2 = 2 Ом типоразмера 1205 и мощностью 0.25 Вт. Этот экземпляр предназначен для стабилизированного тока:
I стаб = U БЭ * R2 = 0.6 В / 2 Ом = 300 мА
Когда ток попадает на трансформатор, его предельная частота изменяется. На входе данный параметр находится в районе 50 Гц. Благодаря преобразованию тока предельная частота на выходе составляет 30 Гц. Высоковольтные выпрямители при этом оценивают полярность напряжения. Стабилизация тока в данном случае осуществляется благодаря конденсаторам. Снижение помех происходит в резисторах. На выходе напряжение вновь становится постоянным, и в трансформатор поступает с частотой не выше 30 Гц.
Релейный стабилизатор тока (схема показана ниже) включает в себя компенсационные конденсаторы. Мостовые выпрямители в этом случае используются в начале цепи. Также следует учитывать, что транзисторов в стабилизаторе имеется две пары. Одна из них устанавливается перед конденсатором. Необходимо это для поднятия предельной частоты. В данном случае выходное напряжение постоянного тока будет находиться на уровне 5 А. Чтобы номинальное сопротивление выдерживалось, используются резисторы. Для простых моделей свойственны двухканальные элементы. Процесс преобразования в таком случае происходит долго, однако коэффициент рассеивания будет незначительным.
Стабилизаторы с регулируемым напряжением
В схемах с регулируемым выходным напряжением добавляются дополнительные элементы:
Конденсатор C3 уменьшает пульсации выходного напряжения. Рекомендуемый номинал C3 — от 1 до 10 мкФ, большее значение ёмкости значимых улучшений не даёт.
Диод Д2 нужен при использовании C3 — он обеспечивает его разрядку при выключении питания. При отсутствии C3 достаточно диода Д1.
Резисторы R1 и R2 используются для задания выходного напряжения. Регулируемый стабилизатор стремится поддерживать опорное напряжение (Vref) между выводом подстройки и выходом. Поскольку значение опорного напряжения является постоянным, величина тока, протекающего через делитель R1 и R2 определяется только резистором R2. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1.2 до 1.3 В, и в среднем составляет 1.25 В. Напряжение на выходе фактически является суммой падения напряжения на R1 и Vref, т.о., чем больше будет падение напряжения на R1, тем больше будет напряжения на выходе.
Рекомендуемый номинал резистора R2 240 Ом, но допустимо его варьировать в пределах 100-1000 Ом. Выходное напряжение рассчитывается по следующей формуле:
Согласно спецификации значение Iadj лежит в диапазоне 50-100 мкА, поэтому при малых R1 им можно пренебречь.
Основные выводы
Даже самый простой светодиод, если его питание происходит от 220 В переменного тока, требует для стабильности работы драйвер. Его основное значение – стабилизация, выпрямление тока и снижение напряжения. Изготовлен ли он своими руками, или куплен в магазине, его характеризуют три основных параметра:
- Номинальный ток.
- Мощность.
- Напряжение на выходе.
Драйвер для питания светодиодов от 220 В состоит из трех взаимодействующих каскадов – емкостного делителя напряжения, диодного выпрямляющего мостика и стабилизатора. Для монтажа подобного прибора своими руками потребуется запастись необходимыми радиокомпонентами и набором инструментов, купить которые можно в любом специализированном магазине. В ходе сборки устройства нужно строго придерживаться предложенной схемы и инструкции.
Если у вас есть опыт создания своими руками аналогичного драйвера или иной его модификации для светодиода с питанием от сети 220 В, обязательно напишите об этом в комментариях.
Как выполнить ремонт драйвера своими руками
В нашей стране много радиолюбителей, самостоятельно собирающих и ремонтирующих электронные приборы. Разумеется, для них не составит труда отыскать неисправность и качественно устранить ее. Однако, обычный человек, не разбирающийся в электронике, не имеющий навыков ремонта и нужного оборудования, вряд ли сможет выполнить ремонт драйвера своими руками.
Да в этом и нет особой необходимости. Стоимость нового преобразователя для светодиодов и лед-светильников весьма невелика. Можно купить нужное изделие без особого урона для своего бюджета. А замену и подключение драйвера светодиодного светильника несложно выполнить самостоятельно, согласно заводской маркировки проводов.
Скачать печатную плату стабилизатора на LM317
Достоинства данного стабилизатора.
- простота в изготовлении
- надежность
- дешевизна
- доступность компонентов
Недостатки
- низкий КПД.
- необходимость использования массивных радиаторов.
- не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.
Для изготовления данного устройства Вам понадобится:
- Стабилизатор LM317 -1шт.
- Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
- Диод КД522 или аналогичный -1шт.
- Резистор R1 -47ОМ желательно от 1Вт -1шт.
- Резистор R3 220Ом от 0.25 Вт -1шт.
- Переменный резистор линейный — 5кОм -1шт.
- Конденсатор электролитический 1000мФ от 50В -1шт.
- Конденсатор электролитический 100мФ от 50В -1шт.
- Диодный мост током от 5А
Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.
Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.
Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.
Сборка стабилизатора на LM317
Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.
Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.
Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.
На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.
У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.
Готовый блок питания выглядит так.
Виды драйверов
Устройства, осуществляющие питание светодиодов, условно можно разделить на:
- импульсные;
- линейные.
Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.
Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.