Elektrikoff09.ru

Журнал "Электросети"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор напряжения для ходовых огней своими руками

Стабилизатор напряжения для ходовых огней своими руками

В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.

На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:

  • действительно будет работать;
  • обеспечит безопасность и защищенность светотехнике.

Линейный драйвер на LM317

Описание и Характеристики

По-сути, LM317 представляет собой стабилизатор напряжения , который можно включить и как стабилизатор тока . Схема драйвера на этой микросхеме проста, как угол дома: вам потребуется сама микросхема и. один опорный резистор – и все! Все детали можно спаять навесным монтажом, прикрутив микросхему прямо к радиатору. Благодаря простоте и доступности при стоимости микросхемы около 0,2 у.е. , эта микросхема многие годы пользуется огромной популярностью среди радиолюбителей. Один из аналогов микросхемы – популярная отечественная «КРЕН-ка» КР142ЕН12.

В зависимости от исполнения LM317 может иметь добавочный индекс, характеризующий корпус микросхемы. Наиболее распространенный варинат – LM317T в корпусе TO-220 под винт для крепления непосредственно к радиатору охлаждения. LM317D2T в корпусе D 2 PAK рассчитана для монтажа на плате при небольшой мощности нагрузки.

Микросхема линейного стабилизатора LM317 / LM317T

Принцип регулирования напряжения/тока линейного стабилизатора состоит в том, что стабилизатор изменяет сопротивление p-n перехода выходного мощного транзистора (по сути, последовательного резистора в цепи) и тем самым адаптивно отсекает “лишнее” напряжение или гасит на себе “лишний” ток. Благодаря этому к питающему напряжению не домешиваются какие-либо высокочастотные помехи, поскольку их нет в принципе. Однако, у линейных стабилизаторов есть и серьезный недостаток. Как известно, при прохождении тока через любой резистор, на нем рассеивается мощность в виде тепла. Поэтому у линейного стабилизатора на LM317 склонность к сильному нагреву и, как следствие, достаточно низкий КПД .

Схемы и примеры включения

Схемы и примеры включения стабилизатора тока на LM317

Схема подключения LM317 для стабилизатора тока предельна проста – просто подключить опорный резистор заданного номинала между ножками выхода и регуляторным входом. Значения сопротивления и мощности опорного резистора можно расчитать по упрощеной формуле:

R = 1,25 / I out P = 1,25 ⋅ I out

Полученные значения округляем до ближайшего значения номиналов сопротивления и до ближайшего бо́льшего значения мощности, например для подключения полуваттных SMD 5730 получаем резистор на 8,2 Ом, мощностью 0,25 Вт, а для светодиодов на 1 Вт (300 мА), соответственно – 4,3 Ом и 0,5 Вт. Может оказаться, что резисторов требуемого номинала нет в наличии, тогда можно скомбинировать составной резистор из нескольких одинаковых, соединив из параллельно. В таком случае суммарное сопротивление такого составного резистора будет равно сопротивлению каждого резистора поделенного на их кол-во, а мощность будет равно мощности каждого резистора помноженного на их кол-во. Для простоты расчетов в Сети есть достаточно много он-лайн калькуляторов, например, такой .

Для работы стабилизатора тока на LM317 происходит падение напряжения не менее 3 В – это надо учитывать при подборе входного напряжения и количества последовательно соединенных светодиодов. Например, рабочее напряжение для SMD 5730 – 3,3…3,4 В. Следовательно, если подключать по 3 светодиода в группе, то входное напряжение должно быть от 13 В (рабочее напряжение исправной бортовой сети автомобиля – 14 В).

Читайте так же:
Светодиоды с низким потреблением тока

При всей свое простоте линейный стабилизатор тока на LM317 отличается низким КПД и потребностью в дополнительным охлаждением.

Заключение

Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

Фотогалерея «Микросхемы для самодельных выпрямителей»

Стабилизатор тока для светодиодов своими руками - схема выпрямителя напряжения 12 вольт для автомобиля

Стабилизатор тока для светодиодов своими руками - схема выпрямителя напряжения 12 вольт для автомобиля

Стабилизатор тока для светодиодов своими руками - схема выпрямителя напряжения 12 вольт для автомобиля

Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Как сделать стабилизатор напряжения на 12 вольт для светодиодов в авто на микросхеме L7812

Чтобы собрать качественный стабилизатор напряжения, можно использовать трехконтактный регулятор напряжения постоянного тока, выпускающийся в серии L7812. Это устройство запитает не только отдельные лампочки в автомобиле, но и целую ленту из светодиодов.

L7812

L7812

Компоненты:

  1. Микросхема L7812.
  2. Конденсатор 330 мкф 16 В.
  3. Конденсатор 100 мкф 16 В.
  4. Выпрямительный диод на 1 ампер. Можно использовать 1n4001 или диод Шоттки.
  5. Термоусадка на 3 мм.
  6. Соединительные проводки.

Порядок сборки:

  1. Немножко укорачиваем одну ножку стабилизатора.
  2. Используем припой.
  3. К короткой ножке добавляем диод, а после и конденсаторы.
  4. На проводки помещаем термоусадку.
  5. Занимаемся припайки проводов.
  6. Надеваем термоусадку, прижимаем ее при помощи строительного фена или зажигалки. Тут важно не перестараться и не расплавить термоусадку.
  7. На вход с левой стороны подаем питание, справа будет выход на светодиодную ленту.
  8. Проводим испытание – включаем освещение. Лента должна загореться, срок ее эксплуатации теперь увеличится.

Так делается стабилизатор напряжения 12В собственными руками.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

Читайте так же:
Passat b3 выключатель освещения багажника

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Читайте так же:
Пусковой ток греющего кабеля raychem 1

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Регулируемые стабилизаторы LM317 и LM337. Особенности применения

Стабилизатор LM317 и LM337В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает, при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337 — регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные!

Даташит производителя: datasheet LM317 (pdf-формат 1041 кб), datasheet lm337 (pdf-формат 43кб).

Цоколёвка LM317 и LM337:

Цоколёвка lm337Цоколёвка Lm317

Типовая схема включения LM317:

LM317

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!
1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ. Установка емкости больше указанного значения ощутимого эффекта не даёт.

Lm317 super

Увеличение по клику

Lm317-2diod

увеличение по клику

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Lm317 best

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5. Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:

Lm317 layout

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).
Читайте так же:
Пример расчета токов кз кабельной линии

Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.

Похожие статьи:

Следите за новостями портала:

14 комментариев к “Регулируемые стабилизаторы LM317 и LM337. Особенности применения”

Отечественные аналоги микросхем:

Микросхема 142ЕН12 выпускалась с разными вариантами цоколёвки, так что будьте внимательны при их использовании!

В связи с широкой доступностью и низкой стоимостью оригинальных микросхем

лучше не тратить время, деньги и нервы.

Используйте LM317 и LM337.

Здравствуйте, уважаемый Главный Редактор! Я у Вас зарегистрирован и мне тоже очень хочется прочесть всю статью, изучить Ваши рекомендации по применению LM317. Но, к сожалению, что-то не могу просмотреть всю статью. Что мне необходимо сделать? Порадуйте меня, пожалуйста, полной статьей.

С уважением Сергей Храбан

Я Вам очень благодарен, спасибо большое! Всех благ!

Уважаемый главный редактор! Собрал двух полярник на lm317 и lm337. Все прекрасно работает за исключением разности напряжений в плечах. Разница не велика, но осадок имеется. Не могли бы Вы подсказать, как добиться равных напряжений, а главное причина подобного перекоса в чем. Заранее благодарен Вам за ответ. С пожеланием творческих успехов Олег.

Уважаемый Олег, разница напряжений в плечах обусловлена:

1. разницей опорных напряжений микросхем. То что в паспорте указано 1,25В — это идеальный случай (или усреднённое значение). Подробнее здесь: radiopages.ru/accurate_lm317.html

2. отклонение значений задающих резисторов. Следует помнить, что резисторы имеют допуски 1%, 5%, 10% и даже 20%. То есть, если на резисторе написано 2кОм, его реально сопротивление может быть в районе 1800—2200 Ом (при допуске 10%)

Даже если Вы поставите многооборотные резисторы в цепи управления и с их помощью точно выставите необходимые значения, то. при изменении температуры окружающей среды напряжения всё равно уплывут. Так как резисторы не факт что прогреются (остынут) одинаково или изменяться на одинаковую величину.

Решить Вашу проблему можно, используя схемы с операционными усилителями, которые отслеживают сигнал ошибки (разницу выходных напряжений) и производят необходимую корректировку.

Рассмотрение таких схем выходит за рамки данной статьи. Гугл в помощь.

Уважаемый редактор!Благодарю Вас за подробный ответ, который вызвал уточнения- насколько критично для унч, предварительных каскадов, питание с разностью в плечах в 0,5- 1 вольт? С уважением Олег

Разность напряжений в плечах чревата в первую очередь несимметричным ограничением сигнала (на больших уровнях) и появлением на выходе постоянной составляющей и др.

Если тракт не имеет разделительных конденсаторов, то даже незначительное постоянное напряжение, появившееся на выходе первых каскадов, будет многократно усилено последующими каскадами и на выходе станет существенной величиной.

Для усилителей мощности с питанием (обычно) 33-55В разница напряжений в плечах может быть 0,5-1В, для предварительных усилителей лучше уложиться в 0,2В.

Уважаемый редактор! Благодарю вас за подробные, обстоятельные ответы. И, если позволите, еще вопрос: Без нагрузки разность напряжений в плечах составляет 0,02- 0,06 вольт. При подключении нагрузки положительное плечо +12 вольт, отрицательное -10,5 вольт. С чем связан такой перекос? Можно ли подстроить равенство выходных напряжений не на холостом ходу, а под нагрузкой. С уважением Олег

Если делать всё правильно, то стабилизаторы надо настраивать под нагрузкой. МИНИМАЛЬНЫЙ ток нагрузки указан в даташите. Хотя, как показывает практика, получается и на холостом ходу.

Читайте так же:
Одноклавишный выключатель света этюд

А вот то, что отрицательное плечо проседает аж на 2В, это неправильно. Нагрузка одинаковая?

Тут либо ошибки в монтаже, либо левая (китайская) микросхема, либо что-то ещё. Ни один доктор не будет ставить диагноз по телефону или переписке. Я тоже на расстоянии лечить не умею!

А Вы обратили внимание что у LM317 и LM337 разное расположение выводов! Может в этом проблема?

Благодарю Вас за ответ и терпение. Я не прошу детального ответа. Речь идет о возможных причинах, не более. Стабилизаторы нужно настраивать под нагрузкой: то есть, условно, я подключаю к стабилизатору схему, которая будет от него запитываться и выставляю в плечах равенство напряжений. Я правильно понимаю процесс настройки стабилизатора? С уважением Олег

Олег, не очень! Так можно схему спалить. На выход стабилизатора нужно прицепить резисторы (нужной мощности и номинала), настроить выходные напряжения и лишь после этого подключать питаемую схему.

По даташиту у LM317 минимальный выходной ток 10мА. Тогда при выходном напряжении 12В на выход надо повесить резистор на 1кОм и отрегулировать напряжение. На входе стабилизатора при этом должно быть минимум 15В!

Кстати, как запитаны стабилизаторы? От одного трансформатора/обмотки или разных? При подключении нагрузки минус проседает на 2В -а как дела на входе этого плеча?

Доброго здоровья, уважаемый редактор! Транс мотал сам, одновременно две обмотки двумя проводами. На выходе на обоих обмотках по 15,2 вольта. На конденсаторах фильтра по 19,8 вольт. Сегодня, завтра проведу эксперимент и отпишусь.

Кстати у меня был казус. Собрал стабилизатор на 7812 и 7912, умощнил их транзисторами tip35 и tip36. В результате до 10 вольт регулировка напряжения в обоих плечах шла плавно, равенство напряжений было идеальным. Но выше. это было что- то. Напряжение регулировалось скачками. Причем поднимаясь в одном плече, во втором шло вниз. Причина оказалась в tip36, которые заказывал в Китае. Заменил транзистор на другой, стабилизатор стал идеально работать. Я часто покупаю детали в Китае и пришел к такому выводу: Покупать можно, но нужно выбирать поставщиков, которые продают радиодетали, изготовленные на заводах, а не в цехах какого- нибудь не понятного ИП. Выходит чуть дороже, но и качество соответствующее. С уважением Олег.

Доброго вечера, уважаемый редактор! Только сегодня появилось время. Транс со средней точкой, напряжение на обмотках 17,7 вольт. На выход стабилизатора повесил резисторы по 1 ком 2 ватта. Напряжение в обоих плечах выставил 12,54 вольта. Отключил резисторы, напряжение осталось прежним- 12,54 вольта. Подключил нагрузку (10 штук ne5532)стабилизатор работает прекрасно.

Благодарю Вас за консультации. С уважением Олег.

Добавить комментарий

Спамеры, не тратьте своё время — все комментарии модерируются.
All comments are moderated!

↑ Заключение

Устройство позволяет изменять зарядный ток до 1,5 А. Надо следить, чтобы тепловая мощность КР142ЕН12 (LM317) не была превышена. Напряжение аккумуляторной батареи может быть 6, 12, 18, 24 Вольта. При этом может понадобиться замена некоторых резисторов и дополнительная настройка.

Для изменения зарядного тока при одном напряжении удобно подключать шунты параллельно R2 через переключатель.

При настройке и испытаниях заряжалась батарея из десяти никель-кадмиевых элементов емкостью 7 А-час. Время зарядки пропорционально увеличилось, но батарея зарядилась полностью.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector