Elektrikoff09.ru

Журнал "Электросети"
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Центробежный выключатель

Центробежный выключатель

Центробежный выключатель. Страница 1.

Класс 21 Г, 59 ЕТЕПЬСТВО НА ИЗОБРЕТЕНИЕ АВТО,РСИОЕ С ОПИСЯН ентробежного вык ел у 11 м И. И. Рыж о перв. М а опублкко втор ому свидетельств 1935 года (спр автбрского свидетельва, заявлен 169147), но 29 февраля 1936 год О выда выклюв двух,Для автоматического выключения электрических двигателей при уменьшении их скорости известно применение центробежных выключателей, состоящих из центробежных грузов, могущих пере. мещаться вдоль спиц крестовины, закрепленной на оси двигателя (или на какакой-либо другой оси, приводимой во .вращение от этого двигателя), и служа-щих для воздействия на контактное при-способление.Вообще центробежные выключатели разного рода и независимо от конструкции могут или воздействовать на кон такты в цепи электрического реле или тому подобного управляющего двигателем прибора, или же сцеплять вал двигателя с контактным приспособлением,служащим для управления- этим двигателем; непосредственное приведение такого приспособления в действие грузами центробежного выключателя потребовало бы выполнения их чрезвычайно мощными; между тем йривод этого приспособления от вала самого двигателя и ограничение роли центробежного выключателя работой сцепления -контактного приспособления с.валом двигателя значительно облегчает конструкцию вы-. ключателя,Предлагаемый центробежный выключатель минимальной скорости как раз и служит для . осуществления непосред. 269) ственного размыкания выключателя двигателя . от вала последнего. Цля этой цели, согласно изобретению, на валу двигателя рядом с крестовиной свободно расположено кулачковое кольцо, связанное механически с выключателем двигателя и снабженное на периферии упором для сцепления с центробежными грузами при падении числа оборотов вала двигателя. Этим достигается то, что при уменьшении скорости двигателя центробежные грузы, приближаясь к валу сцепляются с упорами упомянутого ку. лачкового кольца и вал поворачивает кольцо на некоторый угол, приводя связанный механически с кольцом выключатель двигателя в разомкнутое положение и, тем самым, выключая двигатель.Предлагаемый центробежный ча тель изображен на чертеже проекциях,На вал 1 двигателя или приводимого им механизма насажена крестовина 3, вдоль спиц которой могут перемещаться, центробежные грузы 2. Рядом с крестовиной свободно. посажено кулачковое кольцо б, снабженное упорами 4 и удерживаемое от перемещения по валу 1 стопорным кольцом 5. Кулачок кольца 6 снабжен рычагом 7, могущим воздействовать на поворотный рычаг 8, установленный ва стойке 9 и связанныйЦф тросом 10 или т. и, с выключателем (рубильником) двигателя, на чертеже не показанным.При нормальной скорости вала 1 грузы 2 действием центробежной силы удерживаются у концов спиц крестовины Х В случае уменьшения числа оборотов вала 2 ниже допустимого предела грузы 2 приближаются к валу 1 и сцепляются с упором 4. При этом кольцо б поворачивается и рычаг 7. ударяется о рычаг 8; вследствие этого последний также поворачивается и тросом 10 размыкает выключатель двигателя; последний останавливается.Для пуска двигателя центробежный выключатель отсоединяется от выключателя двигателя; для этого рукоятка выключателя сцепляется с тросом 10 посредством крючка, который при пуске снимается с выключателя, а после разгона двигателя снова надевается,Предлагаемый выключатель .применен автором на нефтяных промыслах именно — для предотвращения шкива насоса, приводимого электродвигателем через посредство ременной передачи, от буксования, но само собой разумеется, выключатель может быть применен ив других случаях,Предмет изобретения,Центробежный выключатель для автоматического размыкания цепи электрического двигателя при падении числа оборотов последнего, состоящий из центробежных грузов, могущих перемещаться вдоль спиц крестовины, закрепленной на оси двигателя, и служащих для воздействия на контактное приспособление, отличающийся тем, что, с целью непосредственного размыкания выключателя двигателя от вала 1 последнего, на этом валу 1 рядом с крестовиной 3 свободно расположено кулачковое кольцо б, связанное механически с выключателем двигателя и снабженное на периферии упором 4 для сцепления с центробежными грузами 2 при падении числа оборотов вала 1. Тнл. Печатный Труи». Зак, 1556 — И

Индукционный электродвигатель с расщеплённой фазой

В дополнение к основной обмотке или же к двигающейся обмотке статор однофазного двигателя имеет ещё одну обмотку, которую называют вспомогательной или стартовой. Центробежный выключатель подключен последовательно к вспомогательной обмотке. Задачей этого выключателя является отключение вспомогательной обмотки от основной схемы, когда скорость электродвигателя достигнет от 75% до 80% от синхронной скорости.

Известно, что движущаяся обмотка является индукционной по своей природе. Наша задача заключается в том, чтобы создать разницу фаз между двумя обмотками. Это возможно, если стартовая обмотка имеет большое сопротивление. Допустим, что Irun является электрическим током, который проходит через основную или движущуюся обмотку, Istart является током, проходящим через стартовую обмотку, и VT является напряжением, которое подаётся.

Типы однофазных электродвигателей

Известно, что для обмотки с большой резистивностью электрический ток почти в фазе с напряжением, а для обмотки с большой индуктивностью ток отстает от напряжения под большим углом. Стартовая обмотка обладает большой резистивностью, поэтому электрический ток, который идёт через стартовую обмотку, отстаёт от приложенного напряжения с очень маленьким углом. Движущаяся обмотка по сути своей очень индукционная, так что ток в этой обмотке отстаёт от напряжения под большим углом.

Читайте так же:
Удлинитель с выключателем влагозащищенный

Результатом этих двух токов является IT. Данный результат производит вращающееся магнитное поле, которое вращается только в одну сторону. В индукционном двигателе с расщепленной фазой стартовый и основной электрический ток разделены друг с другом под определённым углом, поэтому данный двигатель и получил такое называние.

Применение индукционного электродвигателя с расщеплённой фазой

У данных двигателей имеется низкий стартовый электрический ток, средний стартовый крутящий момент. По этой причине данные двигатели нашли своё применение в таких вещах как центробежные насосы, вентиляторы, стиральные машины, а также во множестве других устройств. Эти двигатели доступны в размерах в диапазоне от 1 / 20 киловатт до 1 / 2 киловатт.

Классификация

  • Особенностям конструкции (исполнению): асинхронные и коллекторные;
  • Способу установки;
  • Классу защиты.
  • CSIR, для пуска задействуется конденсатор. Работает через обмотку индуктивности;
  • CSCR. Запускается и работает через конденсатор;
  • RSIR. Для запуска используется реостат;
  • PSC. Присутствует постоянное разделение емкости.

Такие электромоторы также называют индукционными. Их существенный недостаток – недостаточное число оборотов (скорость), обусловленное малой мощностью.

Изобретение однофазных коллекторных двигателей, способных выдерживать существенную нагрузку, давать высокий крутящийся момент при запуске, регулировать скорость вращения и количество оборотов, нашло широкое применение и использование в качестве электропривода к стиральной машине, пылесосу и различному электроинструменту, которым необходима хорошая мощность для нормальной работы.

Высокий шум, искрение при соприкосновении графитных щеток с кольцами коллектора, постоянная чистка токосъемника – существенные их недостатки.

Ко всему прочему, необходимо периодически проверять степень прилегаемости контактов для нормальной работы двигателя, чистить и заменять неисправные.

Устройство электродвигателя

Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.

  1. Статор, или неподвижная часть мотора.
  2. Ротор, или подвижная (вращающаяся) часть мотора.

Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.

Пусковая катушка

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление

Для того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя. Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы. В качестве фазосдвигающего звена могут выступать несколько средств.

  1. Активный резистор.
  2. Конденсатор.
  3. Катушка индуктивности.

Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.

Двух и трёхфазные моторы

Асинхронный двигатель

Существует возможность 2 или 3-фазный мотор подключить к однофазному источнику питания. Иногда по ошибке такие моторы называют однофазными. Это заблуждение, правильно будет называть это «двух (или трёх) фазный электромотор, подключённый в однофазную сеть питания переменного тока». Просто подключить двух или трёхфазный мотор в однофазную сеть не получится. Нужна схема согласования.

Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.

Принцип действия

Переменный электроток создаёт магнитное поле в статоре, которое имеет два поля, они одинаковы по амплитуде, частоте, но разнонаправленны. Эти поля воздействуют на неподвижный ротор, и, вследствие того, что поля разнонаправленны, ротор начинает вращение. При отсутствии в моторе пускового механизма, то ротор будет стоять на месте. Ротор, начав вращение в одну сторону, будет вращаться далее в этом же направлении.

Запуск мотора

Как самостоятельно подключить двигатель

Посредством магнитного поля производится запуск мотора, магнитное поле, воздействуя на ротор, принуждает его вращаться. Создают магнитное поле главная и дополнительная катушки, пусковая имеет меньший размер, подключается она к дополнительной через конденсатор, катушку индуктивности или активный резистор.

Если мотор низкой мощности, пусковая фаза замкнута. Чтобы запустить такой двигатель, подключать электричество к пусковой катушке можно лишь временно, не более чем на три секунды. Для этого существует пусковая кнопка. Кнопка вставлена в пусковое устройство.

Читайте так же:
Преимущество вакуумных выключателей перед масляными

Когда происходит нажатие пусковой кнопки, происходит подача электроэнергии на рабочую и на пусковую катушку одновременно, двигатель в эти первые секунды запуска работает как двухфазный, но через три секунды ротор уже набрал обороты, мотор запустился, и кнопка отпускается. Прекращается подача электроэнергии на пусковую катушку, но подача электричества на рабочую обмотку не прекращается, так устроено пусковое устройство, затем устройство работает уже как однофазное.

Важно помнить, что не следует долго держать пусковую кнопку, так как пусковая катушка может перегреться и выйти со строя, она рассчитана на работу несколько секунд. Для обеспечения безопасности в корпусе однофазного силового агрегата может быть встроено тепловое реле, центробежный выключатель. Центробежный выключатель устроен таким образом, что когда ротор набрал обороты, центробежный выключатель выключается сам, без вмешательства человека. Пусковой ток однофазного двигателя выше рабочего, после запуска ток снижается до уровня рабочего. Схему подключения однофазного двигателя смотрите здесь.

Тепловое реле

Тепловое реле действует следующим образом: при нагревании обмоток до установленного на реле предела, реле производит прекращение подачи электроэнергии на обе фазы, таким образом, исключается выход из строя при перегрузке или другой причине, это не даст возникнуть пожару.

Достоинства

К положительным качествам такого мотора можно отнести простоту его устройства, ротор в этой конструкции короткозамкнутый, обмотка статора не представляет собой большой сложности.

Недостатки

Кроме достоинств, в этом моторе имеются и некоторые недостатки.

  1. Невысокий пусковой момент мотора.
  2. Низкий КПД электродвигателя.
  3. Электродвигатель не способен генерировать магнитное поле, которое выполняет вращение.

По этой причине такой двигатель сам не может начать вращение. Дело в том что для того, чтобы мотор начал вращение, он должен иметь не менее двух обмоток, а следовательно, и двух фаз, но мотор имеет одну фазу изначально, таково его устройство. Кроме наличия двух фаз, требуется чтобы одна обмотка была смещена по отношению к другой на определённый угол.

Применение ЧРП [ править | править код ]

ЧРП применяются в:

  • судовом электроприводе большой мощности (синхронная работа клетей)
  • высокооборотном приводе вакуумных турбомолекулярных насосов (до 100 000 об/мин.)
  • конвейерных системах
  • резательных автоматах
  • станках с ЧПУ — синхронизация движения сразу нескольких осей (до 32 — например в полиграфическом или упаковывающем оборудовании) (сервоприводы)
  • автоматически открывающихся дверях , насосах, вентиляторах, компрессорах
  • бытовых инверторных сплит-системах
  • на электротранспорте: электровозах, электропоездах, трамваях и троллейбусах
    • В транспортном моделизме подвидом ЧРП является электронный регулятор хода

    Наибольший экономический эффект даёт применение ЧРП в системах вентиляции, кондиционирования и водоснабжения, где применение ЧРП стало фактически стандартом. [ источник не указан 3617 дней ]

    Преимущества применения ЧРП [ править | править код ]

    • Высокая точность регулирования
    • Широкий диапазон регулирования асинхронного двигателя
    • Экономия электроэнергии в случае переменной нагрузки (то есть работы эл. двигателя с неполной нагрузкой)
    • Равный максимальному пусковой момент
    • Возможность удалённой диагностики привода по промышленной сети
    • Распознавание выпадения фазы для входной и выходной цепей
    • Учёт моточасов
    • Повышенный ресурс оборудования
    • Уменьшение гидравлического сопротивления трубопровода из-за отсутствия регулирующего клапана
    • Плавный пуск двигателя, что значительно уменьшает его износ
    • ЧРП как правило содержит в себе ПИД-регулятор и может подключаться напрямую к датчику регулируемой величины (например, давления).
    • Управляемое торможение и автоматический перезапуск при пропадании сетевого напряжения
    • Подхват вращающегося электродвигателя
    • Стабилизация скорости вращения при изменении нагрузки
    • Значительное снижение акустического шума электродвигателя, (при использовании функции «Мягкая ШИМ»)
    • Дополнительная экономия электроэнергии от оптимизации возбуждения эл. двигателя
    • Позволяют заменить собой автоматический выключатель

    Недостатки применения ЧРП [ править | править код ]

    • Большинство моделей ЧРП являются источником помех
    • Сравнительно высокая стоимость для ЧРП большой мощности (окупаемость минимум 1-2 года)
    • Старение конденсаторов главной цепи

    Применение преобразователей частоты на насосных станциях [ править | править код ]

    Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, с запасом по производительности) и постоянно функционируют с постоянной частотой вращения, без учёта изменяющихся расходов, вызванных переменным водопотреблением. При минимальном расходе насосы продолжают работу с постоянной частотой вращения. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает. Основной экономический эффект применения частотно-регулируемых приводов достигается не за счет экономии электроэнергии, а благодаря существенному уменьшению расходов на ремонт водопроводных сетей. [ источник не указан 3617 дней ]

    Появление регулируемого электропривода позволило поддерживать постоянное давление непосредственно у потребителя. Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного назначения. В результате адаптации общепромышленных асинхронных двигателей к их условиям эксплуатации в управляемых электроприводах создаются специальные регулируемые асинхронные двигатели с более высокими энергетическими и массогабаритностоимостными показателями по сравнению с неадаптированными. Частотное регулирование скорости вращения вала асинхронного двигателя осуществляется с помощью электронного устройства, которое принято называть частотным преобразователем. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной. Во второй зоне (частота выше номинальной) максимальный момент на валу обратно пропорционален скорости вращения.

    Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. С учётом скольжения скорость вращения двигателя составляет около 2800 (зависит от мощности) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (так как это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя понизить частоту и амплитуду подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, и, следовательно, изменится производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя от специального датчика давления, установленного у потребителя, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

    Современный преобразователь частоты имеет компактное исполнение, пыле- и влагозащищённый корпус, удобный интерфейс, что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,18 до 630 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

    • экономить электроэнергию (при существенных изменениях расхода), регулируя мощность электропривода в зависимости от реального водопотребления (эффект экономии 20 %);
    • снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5 %);
    • уменьшить расходы (основной экономический эффект) на аварийные ремонты оборудования (всей инфраструктуры подачи воды за счет резкого уменьшения числа аварийных ситуаций, вызванных в частности гидравлическим ударом, который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);
    • достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;
    • увеличить напор выше обычного в случае необходимости;
    • комплексно автоматизировать систему водоснабжения, тем самым снижая фонд заработной платы обслуживающего и дежурного персонала, и исключить влияние «человеческого фактора» на работу системы, что тоже немаловажно.

    По имеющимся данным срок окупаемости проекта по внедрению преобразователей частоты составляет от 3 месяцев до 2 лет.

    Система позиционирования с помощью ЧРП [ править | править код ]

    С помощью современных ЧРП можно осуществлять контроль положения таких механизмов как высокоточные обрабатывающие станки, сборочные столы, конвейерные системы, поворотные столы, складском оборудовании. Таким образом, становятся не нужны шаговые двигатели и дорогие сервоприводы с дополнительным контроллером. Весь функционал позиционирования конфигурируется в настройках ЧРП. Самые основные возможности позиционирования это: переход по заданным позициям, поворот на заданный угол, остановка в заданном положении и блокировка вращения. При этом в отличие от маломощных шаговых двигателей и сервоприводов появляется возможность позиционирования действительно крупными механизмами с двигателями большой мощности до 315 кВт.

    Самостоятельный подбор ЧП

    У вас есть три пути: выбрать общепромышленную модель, выбрать модель для конкретного применения или по характеристикам.

    Выбор общепромышленной модели

    Это наиболее быстрый и простой вариант. Например, универсальный общепромышленный векторный ЧП большой мощности «Веспер» из линейки EI -9011 в защищенном корпусе класса IP54 подходит для большинства задач и может использоваться для управления приводами практически всех промышленных механизмов в сложных условиях эксплуатации. Минус такого решения — высокая цена универсального ЧП.

    Выбор по стандартному ряду мощностей электродвигателей

    Это тоже быстрый и удобный вариант. Как правило, номинальная мощность большинства преобразователей соответствует стандартной серии.

    Стандартные серии электродвигателей имеют следующие уровни (номинальной) мощности:

    кВт0,060,090,120,180,250,370,550,751,101,502,203,00
    кВт4,005,507,5011,015,018,522,030,037,045,055,075,0

    Преобразователь частоты подбирается такой же мощности, что и двигатель, или чуть большей. Например, если мощность привода 1,5 кВт, то преобразователь может быть 1,5-2 кВт.

    Недостаток этого решения — можно переплатить за избыточную мощность частотника, если электродвигатель не нагружается полностью. Или наоборот: если привод часто работает с пиковыми нагрузками, то приобретенный по стандартной серии ЧП может не справляться с обеспечением работоспособности.

    Выбор по характеристикам

    1. Электропитание и диапазон выходной частоты.

    Количество питающих фаз и номинальное напряжение (В) — первое, на что нужно обращать внимание при выборе. Если это не учесть и неправильно подключить оборудование, возникнут аварийные ситуации и, как следствие, техника выйдет из строя. Выпускаются одно- и трехфазные модели с напряжением на 220 В и 380 В соответственно. Однофазная модель ЧП имеет трёх фазный выход для подключения трёхфазного электродвигателя. Есть также высоковольтные мегаваттные установки для особо мощных агрегатов.

    Напряжение местных электросетей, а вернее его качество, также необходимо учитывать при выборе ЧП. Несмотря на то, что Российский стандарт предусматривает для однофазной сети 220 В, а для трехфазной 380 В, на деле бывают существенные провалы и скачки. Если произойдет падение входного напряжения, электропривод аварийно остановится, но если будет скачок вверх, он может сгореть. Поэтому чем шире диапазон допустимых значений напряжения прибора, тем лучше (смотреть их нужно в техническом описании). Модели с широким диапазоном стоят дороже.

    Частота (Гц) — следующая по важности характеристика, так как непосредственное управление скоростью вращения вала осуществляется с помощью изменения частоты выходного напряжения. Нужно обратить внимание на диапазон значений выходной частоты ПЧ (например, от 0 до 400 Гц). Чем шире диапазон, тем больше возможностей. У преобразователей частоты, на основе инвертора напряжения, выходная частота не зависит от значения частоты напряжения питания. Все ПЧ ООО «Компании Веспер» выполнены по схеме инвертора напряжения с промежуточным звеном постоянного тока.

    2. Мощность и номинальный ток.

    Выбор частотного преобразователя по мощности и номинальному току применяемого электродвигателя можно осуществить следующими способами:

    • по значению номинального тока электродвигателя по формуле: Iпч = (1.05…1.1) х Iдв ;
    • на основе полной мощности (кВА), рассчитывается по формуле: Рпч = Uдв х Iдв х √3 / 1000.

    Важно, чтобы выходной ток/мощность частотника был равен или превышал номинальный ток/мощность двигателя. Поэтому для правильного выбора необходимо знать номинальные характеристики электродвигателя.

    Получить нужные сведения можно из технической документации, по надписям на корпусе (шильдикам) либо провести замеры.

    1.jpg

    Если двигатель периодически работает с пиковой нагрузкой (значительный пусковой момент на валу, быстрый разгон, резкое торможение), это нужно учитывать. Следует выбирать модель, которая в состоянии обеспечить перегрузочную способность.

    3. Методы управления.

    Есть два основных метода управления:

    • векторный;
    • скалярный.

    Приборы со скалярным управлением стоят дешевле и проще в настройке, но они имеют малый диапазон (1:10) и низкую точность регулировки (погрешность скорости может быть 5-10 %). Такие частотно регулируемые электроприводы целесообразно использовать, когда параметры нагрузки заранее известны и не «плавают» при постоянной частоте. Это могут быть различные механизмы с фиксированным режимом работы, отвечающие за поддержание определенного состояния техпроцесса. К примеру: насосы, вентиляторы, компрессоры.

    Векторные приборы более технологичны, имеют широкий диапазон режимов и регулировок (>1:200) с практически нулевой погрешностью, могут поддерживать заданный момент при меняющейся скорости и на сверхмалых оборотах, а также постоянную скорость при резко меняющейся нагрузке. Но они стоят дороже и требуют тонкой индивидуальной настройки специалистом. Такие векторные ЧП подходят для конвейеров, лифтов, транспортеров, кранов, прессов, токарных станков.

    Метод управления электродвигателемДиапазон регулирования скоростиПогрешность скорости, %Время нарастания момента, мсПусковой моментЦенаСтандартные применения
    Скалярный1:105-10Не доступноНизкийОчень низкаяНизкопроизводительные: насосы, вентиляторы, компрессоры, ОВК (отопление, вентиляция и кондиционирование)
    ВекторныйЛинейныйПолеориентированное управление>1:200<1-2ВысокийВысокаяВысокопроизводительные: краны, лифты, транспорт и т.д.
    Прямое управление моментом с ПВМ>1:200<1-2ВысокийВысокая
    НелинейныйПрямое управление моментом с таблицей включения>1:200<1ВысокийВысокая
    Прямое самоуправление>1:200<1-2ВысокийВысокаяВысокопроизводительные: электрическая тяга, быстрое ослабление поля

    4. Дополнительные опции частотного преобразователя для электродвигателя.

    Чтобы понять, какие дополнительные возможности могут понадобиться, необходимо ориентироваться на круг задач (для чего предполагается использовать ЧП), эксплуатационные нагрузки (сколько приводов будет контролировать и в каком режиме), условия, в которых прибор будет работать (нужна ли спецзащита корпуса и др.).

    • Для управления приводами с лёгкой нагрузкой и стабильными оборотами (вентиляторы и насосы) выбирают недорогую простую модель с ограниченным набором регулировок и минимальными опциями.
    • Для управления приводами с переменными нагрузками, быстрыми стартами и остановками (лифтовые или конвейерные двигатели) нужен ЧП с модулем отвода излишков энергии, возникающих при торможении.
    • Для высокоточных задач (в станках различного назначения) может понадобиться прибор с тонкой настройкой в широком диапазоне режимов и сохранением заданного крутящего момента на сверхмалых оборотах.

    Дополнительных опций много, как и задач, которые решают частотники. Поэтому при выборе модели частотного преобразователя для электродвигателя полезно написать свой список с теми опциями, которые необходимы.

    Мы составили перечень наиболее востребованных опций:

    • Дистанционное управление.
    • Централизованное управление в составе кластера.
    • Контроль работы только одного привода.
    • Контроль сразу нескольких двигателей.
    • С прямой связью.
    • Защищенный корпус (степень по классу IP).
    • Модульность.
    • Встроенный дисплей и различные индикаторы.
    • Программирование с помощью встроенного пульта управления или компьютера.
    • Поддержка обратной связи.
    • Наличие дискретных, аналоговых, цифровых выходов.
    • Метод модуляции и диапазон значений частоты ШИМ).
    • Тормозной модуль и способ отвода излишков энергии при торможении (рекуперация, перевод в тепло).
    • Автонастройка.
    • Возможность пуска (с поиском скорости) свободно вращающегося двигателя.

    Если в комплектации не будет всех нужных опций из списка, можно заказать дооснащение. Компания «Веспер» предоставляет такую возможность.

    Также полезно знать, что ведущие производители выпускают специальные серии преобразователей, настроенные и оптимизированные для решения конкретных задач. В них уже учтены все нюансы и включены необходимые опции.

    Серия частотных преобразователей «Веспер» EI-P7012 ориентирована на работу с насосами. Серия E3-8100В идеально подходит для вентиляторов.

    5. Гарантийные условия и сервисное сопровождение.

    Технические характеристики при выборе преобразователя частоты важны, но нужно еще учитывать качество сборки и возможность сервисного сопровождения. Обращайте внимание на:

    • гарантийные условия;
    • продуманность компоновки и конструкционных решений;
    • использование надёжных комплектующих;
    • контроль качества и отсутствие брака в готовых изделиях;
    • репутацию производителя и множество успешно выполненных проектов;
    • профессиональное гарантийное и послегарантийное сервисное обслуживание;
    • доступность специалистов для консультаций;
    • скорость поставки необходимых комплектующих;
    • наличие сети сервисных центров.

    Обеспечить все это на должном уровне могут компании с мощным интеллектуальным и экономическим потенциалом, отлаженным высокотехнологичным производством и многоступенчатым контролем качества.

    Среди российских производителей компания «Веспер» соответствует этим критериям в полной мере. Высокое качество продукции подтверждают сертификаты. Оборудование «Веспер» успешно работает на сотнях объектах электроэнергетики, металлургии, машиностроения, нефтегазового комплекса и других отраслей промышленности.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Схема подключения двигателя через конденсатор

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Подключение

    Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.

    Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:

    Схема подключения регулятора

    Схема подключения регулятора

    Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:

    Распиновка регулятора

    Распиновка регулятора

    Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.

    Проверьте цветовую маркировку

    Проверьте цветовую маркировку

    Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector